Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Urban green space has the functions of ecological and social services, and the two services levels are decided by the supply-demand relationship. However, the supply-demand of green space not only involves in quantity, but also refers to spatial distribution. Therefore, only greening indicators can not wholly reflect the true levels of green space services. Based on the supply-demand analysis and supported by the ArcGIS, this paper examined the ecological and social services levels of the urban green spaces in Nanjing City by using the evenness indicator and the rate the people could enjoy the public green space in their accessible area. Accordingly, the ecological and social services levels of the green space in the City were investigated. The results showed that in the east of Nanjing City, green spaces were rich, but high accessible ones were lack, which resulted in a moderate social service level. In the center of the City, green spaces were lack and distributed unevenly, resulting in the low levels of ecological and social services. In Hexi area, due to the shortage in ecological green space and its uneven distribution, the green spaces had a high level social service but a low level ecological service. In the southern and northern areas of the City, green spaces were in deficiency, uneven distribution, and lack in high accessible.

Download full-text PDF

Source

Publication Analysis

Top Keywords

green space
28
green spaces
20
ecological social
16
social services
16
green
12
urban green
12
nanjing city
12
services levels
12
city green
12
based supply-demand
8

Similar Publications

Impact of wettability heterogeneity on methane hydrate growth kinetics in partially water-saturated sediments.

J Colloid Interface Sci

August 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),

Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.

View Article and Find Full Text PDF

Signal Peptide-Guided Delivery of a Mucin-Like Collagen Analogue for Periplasmic Barrier Reinforcement: A Platform for Enhancing Microbial Survival.

ACS Synth Biol

September 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China.

The environmental resistance exhibited by microorganisms is concerned with their ability to withstand and adapt to an array of detrimental environmental conditions, with their survival and reproductive success being threatened. Within the realm of biotechnology, which emphasizes stress resistance, a critical role in bacterial adaptive strategies to environmental fluctuations is assumed to be in the periplasmic space. An innovative methodology to augment bacterial tolerance to stress by employing a mucin-mimetic collagen analogue, designated as S1552 (which is secreted into the periplasmic compartment), is introduced by this investigation.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Structurally unique halichonine B is promising for the design of pharmaceutical leads, while function-oriented optimization is unknown in agrochemical science. Our recent practical synthesis offers a great chance for the discovery of antimicrobial leads. "Linker plus replaceable substituents" is exerted, in which up to 9 unique linkers together with diverse substituents from a wide chemical space are investigated for optimization of the readily available drimanyl amine.

View Article and Find Full Text PDF

Urban green space disparities persist amid rapid urbanization, widening the supply-demand gap between parks and developed area. Population density is a critical determinant in estimating park visitors, defining suitable park locations, and allocating facilities for park accessibility. Conventionally, population density data were used as a foundational basis for urban green space planning decisions, often derived from sources like the US Census Bureau, primarily reflecting "nighttime residential" distribution.

View Article and Find Full Text PDF