98%
921
2 minutes
20
Purpose: Models to predict membrane-water partition coefficients (Kp) as a function of drug structure, membrane composition, and solution properties would be useful. This study explores the partitioning of dexamethasone (Dex) and its ionizable 21-phosphate (Dex-P) in liposomes varying in acyl chain length, physical state, and pH.
Methods: DMPC:mPEG DMPE, DPPC:mPEG DPPE, and DSPC:mPEG DSPE (95:5 mol%) liposomes were prepared by thin film hydration. Kp values for Dex and Dex-P were determined from pH 1.5-8 by equilibrium dialysis and equilibrium solubility (Dex).
Results: Dex Kp values at 25°C were 705 ± 24, 106 ± 11, and 58 ± 9 in DMPC, DPPC, and DSPC, increasing to 478 ± 20 in DPPC liposomes at 45°C. Both neutral and anionic species contributed to the Kp of Dex-P versus solution pH (1.5-8). A linear correlation was found between the natural logarithm of Kp and the inverse of bilayer free surface area (1/afree) where afree is a parameter reflecting chain ordering that depends on bilayer composition and temperature.
Conclusions: Models of the pH dependence of partitioning of ionizable compounds must include contributions of both neutral and ionized species. Bilayer free surface area may be an important variable to predict Kp of drug molecules versus lipid composition and temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-013-1143-z | DOI Listing |
Anal Chem
September 2025
Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States.
Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.
View Article and Find Full Text PDFJ Proteome Res
September 2025
School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.
Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are subcellular particles surrounded by a lipid bilayer membrane and incorporating various additional biomolecules derived from their donor cell. In many disease contexts circulating EVs have received increasing scientific attention due to their potential diagnostic and prognostic value. Additionally, EVs have been ascribed multiple biological functions, ranging from cellular waste disposal to sophisticated, intercellular communication.
View Article and Find Full Text PDFBiomater Adv
August 2025
School of Materials Science and Engineering, National Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China; Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China. Electronic address:
The limited self-healing capacity of critical-sized bone defects presents significant challenges in healing. An effective approach is to regulate the physicochemical properties of biomaterials to mimic the natural bone regenerative microenvironment. In this work, we have prepared Chitosan-Gelatin (CS-Gel) based hydrogel/ Poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) systems, which provide biomimetic and electric cues for bone regeneration.
View Article and Find Full Text PDFAutophagy
September 2025
Department of Chemistry, Dartmouth College, Hanover, NH, USA.
Macroautophagy (hereafter, autophagy) is essential for the degradation of mitochondria from yeast to humans. Mitochondrial autophagy in yeast is initiated when the selective autophagy scaffolding protein Atg11 is recruited to mitochondria through its interaction with the selective autophagy receptor Atg32. This also results in the recruitment of small 30-nm vesicles that fuse to generate the initial phagophore membrane.
View Article and Find Full Text PDF