98%
921
2 minutes
20
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3β1 and αVβ3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVβ5, αVβ3 and α3β1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715429 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1003510 | DOI Listing |
Front Oncol
August 2025
General Hospital of Ningxia Medical University, Yinchuan, China.
Background: Breast cancer (BRCA) is the most prevalent cancer in women, with triple-negative breast cancer (TNBC) accounting for 15-20% of cases. TNBC is associated with higher rates of metastasis, recurrence, and poorer prognosis, underscoring the urgent need for new diagnostic and therapeutic strategies.
Methods: In this study, multiple public online platform, including UCSC Genome, UALCAN, Kaplan Meier plotter, DepMap and Single Cell Portal were used to detect the expression of EPHA2 in TNBC.
Biomedicines
August 2025
Department of Ophthalmology, University Hospital of Zurich, 8091 Zurich, Switzerland.
Congenital cataracts (CCs) are a leading cause of preventable childhood blindness, with genetic factors playing a crucial role in their etiology. Nance-Horan syndrome (NHS) is a rare X-linked dominant disorder associated with CCs but is often underdiagnosed due to variable expressivity, particularly in female carriers. : This study aimed to explore the genetic landscape of CCs in a Swiss cohort, focusing on two novel and one novel variants and their phenotypic presentation.
View Article and Find Full Text PDFCancers (Basel)
August 2025
Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
Background: EphA2 is a receptor tyrosine kinase that contributes to tumor growth and metastasis and has been identified as a viable target for many solid cancers. Investigating EphA2's impact on the host immune system may advance our understanding of tumor immune evasion and the consequences of targeting EphA2 on the tumor microenvironment.
Methods: Here, we examine how tumor-specific EphA2 affects the activation and infiltration of immune cell populations and the cytokine and chemokine milieu in murine models of non-small cell lung cancer (NSCLC).
Biophys J
August 2025
Department of Mathematics, University of Tennessee, Knoxville, TN. Electronic address:
With the growing adoption of single-molecule fluorescence experiments, there is an increasing demand for efficient statistical methodologies and accurate analysis of the acquired measurements. Existing analysis frameworks, such as those that use kinetic models, often rely on strong assumptions on the dynamics of the molecules and fluorophores under study that render them inappropriate for general purpose step counting applications, especially when the systems of study exhibit uncharacterized dynamics. Here, we propose a novel Bayesian nonparametric framework to analyze single-molecule fluorescence data that is kinetic model independent.
View Article and Find Full Text PDF