Nucleolar dominance and different genome behaviors in hybrids and allopolyploids.

Plant Cell Rep

National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.

Published: November 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many plants are allopolyploids with different nuclear genomes from two or more progenitors, but cytoplasmic genomes typically inherited from the female parent. The importance of this speciation mechanism has stimulated the extensive investigations of genetic consequences of genome mergers in several experimental systems during last 20 years. The dynamic nature of polyploid genomes is recognized, and widespread changes to gene expression are revealed by transcriptomic analysis. These progresses show different stabilities of parental genomes and their unequal contributions to the transcriptome, proteome, and phenotype. We review the results in systems where extensive genetic analyses have been conducted and propose possible mechanisms for biased behavior of parental genomes in allopolyploids, including the role of nucleolar dominance. It is hypothesized that the novel ribosomes with rRNAs from uniparental genome and the ribosomal proteins of biparental origins have some impacts on the biased cellular and genetic behaviors of parental genomes in hybrids and allopolyploids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-013-1475-5DOI Listing

Publication Analysis

Top Keywords

parental genomes
12
nucleolar dominance
8
hybrids allopolyploids
8
genomes
6
dominance genome
4
genome behaviors
4
behaviors hybrids
4
allopolyploids
4
allopolyploids plants
4
plants allopolyploids
4

Similar Publications

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF

Low-coverage sequencing refers to sequencing DNA of individuals to a low depth of coverage (e.g., 0.

View Article and Find Full Text PDF

Background: Developmental and epileptic encephalopathies (DEEs) comprise a diverse range of disorders that can arise from both genetic and non-genetic causes. Genetic DEEs are linked to pathogenic variants in various genes with different molecular functions. The wide clinical and genetic variability found in DEEs poses a considerable challenge for accurate diagnosis even with the use of comprehensive diagnostic approaches such as whole genome sequencing (WGS).

View Article and Find Full Text PDF

Black pod disease, caused by a complex of Phytophthora species, poses a severe threat to global cacao production. This study explores the use of CRISPR-Cas9 genome editing to reduce disease susceptibility in Theobroma cacao L. by targeting the TcNPR3 gene, a known negative regulator of plant defence.

View Article and Find Full Text PDF

Rationale: Phelan-McDermid syndrome, also known as chromosome 22q13.3 deletion syndrome, is a genetic disorder primarily caused by a chromosome 22q13.3 deletion or mutation.

View Article and Find Full Text PDF