98%
921
2 minutes
20
The risk of antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is a major obstacle for the development of dengue vaccine candidates. Here, we described a novel approach for assessment of ADE by measuring DENV nonstructural protein 1 (NS1) production in culture supernatants with Fcγ receptor-expressing K562 cells in ELISA format (ELISA-ADE). Enhancing activities quantified by measurement of kinetics of NS1 production were in a good agreement with the results of the virus titration assay. In conjunction with the previously established enzyme-linked immunospot-based micro-neutralization test (ELISPOT-MNT) in 96-well format, the observable dose-response profiles of enhancing and neutralizing activities against all four DENV serotypes were produced with two flaviviral envelope cross-reactive monoclonal antibodies and four primary DENV-1-infected human sera. The simple high-throughput ELISA-ADE assay offers advantages for quantitative measurement of infection enhancement that can potentially be applied to large-scale seroepidemiological studies of DENV infection and vaccination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-013-5021-8 | DOI Listing |
Appl Biosaf
August 2025
Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Introduction: Dengue virus (DENV) poses a significant global health threat, particularly in tropical and subtropical regions, where it is primarily transmitted by spp. mosquitoes. Its biosafety and biosecurity management present unique challenges due to both its vector-borne nature and rare instances of nonvector transmission.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.
Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.
View Article and Find Full Text PDFMed
September 2025
Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Clinical Translational Research, Singapore General Hospital, Singapo
Background: All three dengue vaccines that have completed phase 3 clinical trials have shown greater efficacy in dengue-seropositive compared to dengue-seronegative individuals. This includes the live-attenuated tetravalent dengue vaccine TAK-003, where immunogenicity in baseline seronegative individuals remains lower after two doses, despite seroconversion after the first dose, compared to baseline seropositive individuals after one dose.
Methods: A whole-genome microarray was used to analyze the host response to TAK-003.
Arboviral infections, particularly Dengue and Zika, continue to rise at an alarming rate, with both viruses declared global health emergencies in 2024 and 2016, respectively. The NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) and Zika virus (ZIKV) is highly conserved, making nucleoside-based RdRp inhibitors a promising strategy for antiviral development. While nucleoside analogs have shown strong clinical potential, challenges such as cell permeability, the efficiency of triphosphate conversion, degradation, and mitochondrial toxicity remain.
View Article and Find Full Text PDFParasite
September 2025
Parasitology Department, São Paulo University, 1374 Av. Prof. Lineu Prestes, São Paulo, State of São Paulo 05508-000, Brazil.
Understanding why Diptera, such as mosquitoes and sand flies, feed on humans is crucial in defining them as vectors of diseases such as malaria, dengue fever, Zika virus, and leishmaniasis. Determining their attraction to humans (anthropophily) helps in assessing the risk of disease transmission, designing effective vector control strategies, and monitoring the effectiveness of existing control measures. An important question is whether they are specifically attracted to humans in preference to other mammals or whether there is something else at play.
View Article and Find Full Text PDF