98%
921
2 minutes
20
Although recent studies suggest that high intakes of meat and heme iron are risk factors for several types of cancer, studies in relation to esophageal adenocarcinoma (EAC) are scarce. Previous results in the European Prospective Investigation into Cancer and Nutrition (EPIC) based on a relatively small number of cases suggested a positive association between processed meat and EAC. In this study, we investigate the association between intake of different types of meats and heme iron intake and EAC risk in a larger number of cases from EPIC. The study included 481,419 individuals and 137 incident cases of EAC that occurred during an average of 11 years of follow-up. Dietary intake of meat (unprocessed/processed red and white meat) was assessed by validated center-specific questionnaires. Heme iron was calculated as a type-specific percentage of the total iron content in meat. After adjusting for relevant confounders, we observed a statistically significant positive association of EAC risk with heme iron and processed meat intake, with HR: 1.67, 95% CI: 1.05-2.68 and HR: 2.27, 95% CI:1.33-3.89, respectively, for comparison of the highest vs. lowest tertile of intake. Our results suggest a potential association between higher intakes of processed meat and heme iron and risk of EAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.28291 | DOI Listing |
J Integr Neurosci
August 2025
Central Laboratory, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People's Hospital), 454001 Jiaozuo, Henan, China.
Background: Epilepsy, a significant neurological condition marked by the occurrence of repeated seizures, continues to pose a substantial health challenge. Previous studies have indicated that Dipeptidyl Peptidase-4 (DPP4) inhibitors may possess antiepileptic properties. Ferroptosis, a newly discovered type of programmed cell death, has recently surfaced as a promising therapeutic target in the management of epilepsy.
View Article and Find Full Text PDFSynth Syst Biotechnol
December 2025
Department of Pharmacy of the Fourth Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Nitrogen-nitrogen (N-N) bond-forming enzymes are rare but play vital roles in both primary and secondary metabolism. Guided by a nitric oxide synthase (NOS)-based genome mining strategy, we report the discovery and characterization of a new heme-dependent enzyme system that catalyzes intermolecular N-N bond formation. Using both in vivo and in vitro reconstitution approaches, we demonstrated that a protein complex, comprising a heme enzyme and a 2[4Fe-4S] ferredoxin partner, mediates the coupling of the α-amine group of l-aspartate with inorganic nitrogen oxide species, such as nitrite or nitric oxide, to generate hydrazinosuccinic acid, a key biosynthetic precursor in several natural product pathways.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107 Shenzhen, Guangdong, China.
Background: Adenocarcinoma of Lung (LUAD) remains a leading cause of cancer-related deaths across the globe, and patients harboring epidermal growth factor receptor (EGFR) mutations frequently develop resistance to targeted therapies. While aurora kinase A (AURKA) has been implicated in tumorigenesis, its involvement in regulating ferroptosis via the kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 (NRF2)/heme oxygenase 1 (HO‑1) signaling axis in EGFR-mutant LUAD remains poorly understood.
Methods: We analyzed RNA-seq and clinical data from 594 LUAD samples from The Cancer Genome Atlas (TCGA) to explore associations between AURKA expression, EGFR mutation status, and immune cell infiltration.
Trends Pharmacol Sci
September 2025
Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.
The escalating threat of antimicrobial resistance demands innovative therapeutic strategies beyond classical targets. Recent insights into the mechanisms of bacterial iron acquisition - ranging from siderophores and heme uptake to ferrous iron transport - have enabled new approaches to impair pathogen growth and virulence. These pathways are increasingly being harnessed for therapeutic gain.
View Article and Find Full Text PDFJ Nutr
September 2025
School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia; Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250
Background: Red and processed meat consumption is extensively linked to chronic disease risk in observational studies, with robust meta-analyses demonstrating significant positive associations for colorectal, breast, endometrial, and lung cancers, type 2 diabetes (T2DM), cardiovascular disease (CVD), and all-cause mortality. Dose-response relationships indicate elevated risks even at moderate intakes. Moreover, processed meats consistently show stronger detrimental effects than unprocessed red meats.
View Article and Find Full Text PDF