Assessment of lung function using a non-invasive oscillating gas-forcing technique.

Respir Physiol Neurobiol

Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK. Ele

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conventional methods for monitoring lung function can require complex, or special, gas analysers, and may therefore not be practical in clinical areas such as the intensive care unit (ICU) or operating theatre. The system proposed in this article is a compact and non-invasive system for the measurement and monitoring of lung variables, such as alveolar volume, airway dead space, and pulmonary blood flow. In contrast with conventional methods, the compact apparatus and non-invasive nature of the proposed method could eventually allow it to be used in the ICU, as well as in general clinical settings. We also propose a novel tidal ventilation model using a non-invasive oscillating gas-forcing technique, where both nitrous oxide and oxygen are used as indicator gases. Experimental results are obtained from healthy volunteers, and are compared with those obtained using a conventional continuous ventilation model. Our findings show that the proposed technique can be used to assess lung function, and has several advantages over conventional methods such as compact and portable apparatus, easy usage, and quick estimation of cardiopulmonary variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807684PMC
http://dx.doi.org/10.1016/j.resp.2013.05.015DOI Listing

Publication Analysis

Top Keywords

lung function
12
conventional methods
12
non-invasive oscillating
8
oscillating gas-forcing
8
gas-forcing technique
8
monitoring lung
8
methods compact
8
ventilation model
8
assessment lung
4
non-invasive
4

Similar Publications

An alternative approach to diagnosis and treatment of intractable paroxysmal sneezing in a child.

Turk J Pediatr

September 2025

Department of Child and Adolescent Psychiatry, Ankara Bilkent City Hospital, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.

Background: Intractable paroxysmal sneezing is a rare and diagnostically challenging condition in children, often mimicking organic diseases. While it is often addressed as psychogenic in the literature, our case presented findings suggestive of a tic disorder, highlighting the need for a broader diagnostic perspective.

Case Presentation: An 11-year-old girl was referred to the child and adolescent psychiatry clinic with a one-year history of persistent and fluctuating sneezing episodes.

View Article and Find Full Text PDF

Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.

View Article and Find Full Text PDF

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

Saturation of respiratory strain during robotic hysterectomy in obese women with endometrial cancer.

J Robot Surg

September 2025

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.

To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.

View Article and Find Full Text PDF

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF