98%
921
2 minutes
20
In this paper we present a new optical, flexible pressure sensor that can be applied as smart skin to a robot or to consumer electronic devices. We describe a mechano-optical transduction principle that can allow the encoding of information related to an externally applied mechanical stimulus, e.g., contact, pressure and shape of contact. The physical embodiment that we present in this work is an electronic skin consisting of eight infrared emitters and eight photo-detectors coupled together and embedded in a planar PDMS waveguide of 5.5 cm diameter. When a contact occurs on the sensing area, the optical signals reaching the peripheral detectors experience a loss because of the Frustrated Total Internal Reflection and deformation of the material. The light signal is converted to electrical signal through an electronic system and a reconstruction algorithm running on a computer reconstructs the pressure map. Pilot experiments are performed to validate the tactile sensing principle by applying external pressures up to 160 kPa. Moreover, the capabilities of the electronic skin to detect contact pressure at multiple subsequent positions, as well as its function on curved surfaces, are validated. A weight sensitivity of 0.193 gr(-1) was recorded, thus making the electronic skin suitable to detect pressures in the order of few grams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690071 | PMC |
http://dx.doi.org/10.3390/s130506578 | DOI Listing |
Clin Lymphoma Myeloma Leuk
August 2025
Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY. Electronic address:
Background: Mogamulizumab is more effective in treating the blood component of mycosis fungoides (MF) and Sezary syndrome (SS), though some patients also experience significant skin improvement. The characteristics distinguishing those with a favorable skin response remain unclear.
Objectives: This study aimed to characterize MF/SS patients achieving skin response on mogamulizumab.
Trends Immunol
September 2025
Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 10 Center Drive, 12N248C, Bethesda, MD 20892, USA. Electronic address:
Autoimmune diseases arise from genetic and environmental factors that disrupt immune tolerance. Recent studies highlight the role of myeloid cell immunometabolism, particularly mitochondrial dysfunction, in driving autoimmunity. Mitochondria regulate energy homeostasis and cell fate; their impairment leads to defective immune cell differentiation, abnormal effector activity, and chronic inflammation.
View Article and Find Full Text PDFUltrasound Med Biol
September 2025
State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China. Electronic address:
Objective: Diabetic foot ulcer (DFU) is a common and serious complication of diabetes, often leading to infection, amputation and poor quality of life. Bone marrow mesenchymal stem cells (BMSCs) have shown promise in treating chronic wounds, but their therapeutic efficacy is limited due to poor survival and low regenerative activity. Low-intensity pulsed ultrasound (LIUS), a non-invasive physical modality, has been shown to enhance the biological behavior of BMSCs.
View Article and Find Full Text PDFBr J Anaesth
September 2025
MSk Lab, Imperial College London, London, UK; Theatres and Anaesthetics, Imperial College Healthcare NHS Trust, London, UK. Electronic address:
Background: The mechanisms contributing to epidural-related maternal hyperthermia remain unclear. One explanation is that blockade of cholinergic sympathetic nerves prevents active vasodilation and sweating. However, it is not known how labour epidural analgesia affects cutaneous sympathetic function.
View Article and Find Full Text PDFBMJ Health Care Inform
September 2025
Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
Objectives: The objectives were to examine the associations between accelerometer-measured circadian rest-activity rhythm (CRAR), the most prominent circadian rhythm in humans and the risk of mortality from all-cause, cancer and cardiovascular disease (CVD) in patients with cancer.
Methods: 7456 cancer participants from the UK Biobank were included. All participants wore accelerometers from 2013 to 2015 and were followed up until 24 January 2024, with a median follow-up of 9.