98%
921
2 minutes
20
LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50 ≤ 0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen ((1)O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated (1)O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. (1)O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced (1)O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of (1)O2 generation), and (4) 10-100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0.01) delayed the time to death in a murine lethal challenge model of Rift Valley Fever Virus (RVFV). The viral membrane may be a viable target for broad-spectrum antivirals that target virus-cell fusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630091 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1003297 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
Center for Visual Science, University of Rochester, Rochester, NY, United States.
Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.
View Article and Find Full Text PDFASAIO J
September 2025
From Airlec Medical, Mérignac, France.
Long-distance aeromedical transport of critically ill patients is an increasingly important component of modern intensive care. However, the combination of veno-arterial extracorporeal membrane oxygenation (VA ECMO) and renal replacement therapy (RRT) during an intercontinental flight had never been previously documented. This case report describes the first known case of a 27 year old patient with fulminant viral myocarditis and multi-organ failure who was successfully repatriated from Bangkok (Thailand) to Paris (France) while receiving both VA ECMO and 6 hours of in-flight sustained low-efficiency dialysis (SLED).
View Article and Find Full Text PDFElife
September 2025
Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, United States.
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.
View Article and Find Full Text PDF