98%
921
2 minutes
20
The presence of polymers within solid dose forms, such as solid dispersions, or liquid or semisolid formulations, such as lipid-based formulations, can promote the maintenance of drug supersaturation after dissolution or dispersion/digestion of the vehicle in the gastrointestinal tract. Transiently stable supersaturation delays precipitation, increases thermodynamic activity, and may enhance bioavailability and reduce variability in exposure. In the current study a diverse range of 42 different classes of polymers, with a total of 78 polymers across all classes, grades, and molecular weights were examined, to varying degrees, as potential polymeric precipitation inhibitors (PPIs) using a solvent shift method to initiate supersaturation. To provide a deeper understanding of the molecular determinants of polymer utility the data were also analyzed, along with a range of physicochemical descriptors of the polymers employed, using principle component analysis (PCA). Polymers were selectively tested for their ability to stabilize supersaturation for nine poorly water-soluble model drugs, representing a range of nonelectrolytes, weak acids, and weak bases. In general, the cellulose-based polymers (and in particular hydroxypropylmethyl cellulose, HPMC, and its derivatives) provided robust precipitation inhibition across most of the drugs tested. Subsequent PCA indicate that there is consistent PPI behavior of a given polymer for a given drug type, with clear clustering of the performance of polymers with each of the nonelectrolytes, weak bases, and weak acids. However, there are some exceptions to this, with some specific drug type-polymer interactions also occurring. Polymers containing primary amine functional groups should be avoided as they are prone to enhancing precipitation rates. An inverse relationship was also documented for the number of amide, carboxylic acid, and hydroxyl functional groups; therefore for general good PPI performance the number of these contained within the polymer should be minimized. Molecular weight is a poor predictor of performance, having only a minor influence, and in some cases a higher molecular weight enhances the precipitation process. The importance of ionic interactions to the ability of a PPI to stabilize the supersaturated state was demonstrated by the advantage of choosing a polymer with an opposite charge with respect to the drug. Additionally, when the polymer charge is the same as the supersaturated drug, precipitation is likely to be enhanced. A PCA model based on polymer molecular properties is presented, which has a central oval region where the polymer will general perform well across all three drug types. If the polymer is located outside of this region, then they either show compound-specific inhibition or enhance precipitation. Incomplete separation of the PPI performance based on the molecular properties on the polymers indicates that there are some further molecular properties that might improve the correlation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp300576u | DOI Listing |
J Intern Med
September 2025
Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.
View Article and Find Full Text PDFBiomed Rep
November 2025
College of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.
flavones (PRFs), bioactive components derived from the plant, exhibit anti-inflammatory and anti-tumor properties. However, their therapeutic potential for bladder cancer remains poorly understood. The present study aimed to investigate the anti-tumor effects and molecular mechanisms underlying the effects of PRF on human bladder cancer T24 cells.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China.
Molecular imaging in nuclear medicine has been employed extensively in recent years for tumor-targeted diagnosis and treatment that is attributed to its non-invasive property, which enables visualized functional localization. This functionality relies on the development of radionuclide molecular probes designed with the objective of identifying specific targets on the surface of tumors. Epithelial cell adhesion molecules (EpCAM) are considered to be a promising target as an antigenic marker for its widely present and integral to the processes associated with tumor occurrence and progression.
View Article and Find Full Text PDFMater Today Bio
October 2025
School of Pharmacy, Henan Medical University, Xinxiang, Henan, China.
Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.
View Article and Find Full Text PDFMater Today Bio
October 2025
Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.
Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.
View Article and Find Full Text PDF