Inactivation of Ca(2+)/H(+) exchanger in Synechocystis sp. strain PCC 6803 promotes cyanobacterial calcification by upregulating CO(2)-concentrating mechanisms.

Appl Environ Microbiol

College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China.

Published: July 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyanobacteria are important players in the global carbon cycle, accounting for approximately 25% of global CO2 fixation. Their CO2-concentrating mechanisms (CCMs) are thought to play a key role in cyanobacterial calcification, but the mechanisms are not completely understood. In Synechocystis sp. strain PCC 6803, a single Ca(2+)/H(+) exchanger (Slr1336) controls the Ca(2+)/H(+) exchange reaction. We knocked out the exchanger and investigated the effects on cyanobacterial calcification and CCMs. Inactivation of slr1336 significantly increased the calcification rate and decreased the zeta potential, indicating a relatively stronger Ca(2+)-binding ability. Some genes encoding CCM-related components showed increased expression levels, including the cmpA gene, which encodes the Ca(2+)-dependent HCO3(-) transporter BCT1. The transcript level of cmpA in the mutant was 30 times that in wild type. A Western blot analysis further confirmed that protein levels of CmpA were higher in the mutant than the wild type. Measurements of inorganic carbon fluxes and O2 evolution proved that both the net HCO3(-) uptake rate and the BCT1 transporter supported photosynthetic rate in the slr1336 mutant were significantly higher than in the wild type. This would cause the mutant cells to liberate more OH(-) ions out of the cell and stimulate CaCO3 precipitation in the microenvironment. We conclude that the mutation of the Ca(2+)/H(+) exchanger in Synechocystis promoted the cyanobacterial calcification process by upregulating CCMs, especially the BCT1 HCO3(-) transporter. These results shed new light on the mechanism by which CCM-facilitated photosynthesis promotes cyanobacterial calcification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697565PMC
http://dx.doi.org/10.1128/AEM.00681-13DOI Listing

Publication Analysis

Top Keywords

cyanobacterial calcification
20
ca2+/h+ exchanger
12
wild type
12
exchanger synechocystis
8
synechocystis strain
8
strain pcc
8
pcc 6803
8
promotes cyanobacterial
8
co2-concentrating mechanisms
8
hco3- transporter
8

Similar Publications

Proto-dolomite spherulites with heterogeneous interior precipitated in brackish water cultivation of freshwater cyanobacterium Leptolyngbya boryana.

Sci Total Environ

January 2024

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Tech

Primary dolomite is believed to be formed through cyanobacterial calcification, yet the details and mechanisms of this process are not fully understood. In this study, a freshwater filamentous cyanobacterium, Leptolyngbya boryana, was cultured and domesticated in artificial freshwater and brackish solutions with various Mg/Ca ratios. The hydrochemistry, the extracellular polymeric substance (EPS) composition, and precipitate mineralogy in the medium were monitored.

View Article and Find Full Text PDF

A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria.

Genome Biol Evol

March 2022

Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France.

Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view.

View Article and Find Full Text PDF

Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy.

Environ Sci Technol

November 2017

Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited.

View Article and Find Full Text PDF

Although environmental changes and evolution of life are potentially recorded via microbial carbonates, including laminated stromatolites and clotted thrombolites, factors controlling their fabric are still a matter of controversy. Herein, we report that the exopolymer properties of different cyanobacterial taxa primarily control the microbial carbonates fabrics in modern examples. This study shows that the calcite encrustation of filamentous Phormidium sp.

View Article and Find Full Text PDF

Cyanobacteria are mainly thought to induce carbonate precipitation extracellularly via their photosynthetic activity combined with the nucleation potential of exopolymeric substances. The discovery in microbialites of the alkaline lake Alchichica (Mexico) of Candidatus Gloeomargarita lithophora, a cyanobacterium forming large amounts of intracellular Mg-Ca-Sr-Ba carbonate spherules, showed that intracellular biomineralization in cyanobacteria is also possible. A second cyanobacterium isolated from the same environment, Candidatus Synechococcus calcipolaris G9, has been recently shown to also form intracellular calcium carbonates at the cell poles, a capability shared by all cultured species of the Thermosynechococcus clade, to which it belongs.

View Article and Find Full Text PDF