98%
921
2 minutes
20
In this paper we unveil a novel rhodamine compound based fluorescent chemosensor (1-Pb(2+)) for colormetric and fluorescent detection of citrate in aqueous solution. This is the first fluorescent chemosensor for citrate based on rhodamine compound. The comparison of this method with some other fluorescence methods for citrate indicates that the method can detect citrate in aqueous solution by both color changes and fluorescent changes with long emission wavelength. In the new developed sensing system, 1-Pb(2+) is fluorescent due to Pb(2+)-induced fluorescence enhancement of 1. However, the addition of citrate may release 1 into the solution with quenching of fluorescence. The chemosensor can be applied to the quantification of citrate with a linear range covering from 1.0×10(-7) to 5.0×10(-5) M and a detection limit of 2.5×10(-8) M. The experiment results show that the response behavior of 1-Pb(2+) towards citrate is pH independent in medium condition (pH 6.0-8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for citrate in the presence of other anions (even those that exist in high concentration), which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward citrate is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of citrate in urine samples with satisfactory results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2013.02.040 | DOI Listing |
J Am Chem Soc
September 2025
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
Glutamate (Glu) plays a critical role in the brain, and the ability to directly measure glutamate activity is essential for understanding its physiological functions and pathological processes. Herein, we engineered a family of Glu sensors () based on host-guest interactions through the indicator displacement method (IDA) strategy. The optimized supramolecular chemosensor exhibited specificity, sensitivity, signal-to-noise ratio, rapid kinetics (∼145 ms), and photostability, enabling it to be suitable for monitoring Glu dynamics in neuronal organelles, brain tissues, and zebrafish.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh-495009 India
Rhodamine dye has a high absorption coefficient, fluorescence quantum yield, photostability, and extended wavelengths that make it a promising fluorescent probe. A rhodamine and functionalised azobenzene condensed novel chemosensor L has been reported for the first time to detect Hg in aqueous ethanol optically in this investigation. Chemosensor L's fluorescence activation in response to Hg is due to the suppression of PET and CHEF processes and the change from spirolactam to ring-opened amide.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan.
Two new Schiff base ligands (L1 and L2) were synthesized by condensing thiocarbohydrazide (TCH) with o-anisaldehyde or p-anisaldehyde in ethanol. Their mono- and bi-nuclear complexes with Sn(II), Zn(II), and Fe(II) were prepared for potential fluorescence and biological applications. Characterization was performed using FT-IR, NMR, UV-Vis spectroscopy, mass spectrometry, molar conductance, TGA, X-ray diffraction and SEM.
View Article and Find Full Text PDFBiosensors (Basel)
August 2025
School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
The detection of aliphatic and aromatic biogenic amines (BAs) is important in food spoilage, environmental monitoring, and disease diagnosis and treatment. Existing fluorescent probes predominantly detect aliphatic BAs with single signal variation and low sensitivity, impairing the adaptability of discriminative sensing platforms. Herein, we present a visual chemosensor (galactose-functionalized pyrrolopyrrole -BODIPY, ) that simultaneously detects eight aliphatic and aromatic BAs in a real-time and intuitive way based on their unique electronic and structural features.
View Article and Find Full Text PDFJ Fluoresc
August 2025
Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, (C.G), India.
Herein we describe a quinoxaline mono Schiff base, synthesised from benzil and o-phenylene diamine that may be used as a fluorescent-colourimetric chemosensor to detect Ag ions in organic media with high selectivity and sensitivity over other competitive ions. The sensing processes were operated by visual change, absorption, and emission measurements, and the binding sites were confirmed by FTIR and single-crystal structure of the Ag(I)- complex. From Job-plot analysis, ESI-mass spectra and XRD studies 1:2 binding stoichiometry between host-guest was observed.
View Article and Find Full Text PDF