Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have demonstrated a microfluidic device that can not only achieve three-dimensional flow focusing but also confine particles to the center stream along the channel. The device has a sample channel of smaller height and two sheath flow channels of greater height, merged into the downstream main channel where 3D focusing effects occur. We have demonstrated that both beads and cells in our device display significantly lower CVs in velocity and position distributions as well as reduced probability of coincidental events than they do in conventional 2D-confined microfluidic channels. The improved particle confinement in the microfluidic channel is highly desirable for microfluidic flow cytometers and in fluorescence-activated cell sorting (FACS). We have also reported a novel method to measure the velocity of each individual particle in the microfluidic channel. The method is compatible with the flow cytometer setup and requires no sophisticated visualization equipment. The principles and methods of device design and characterization can be applicable to many types of microfluidic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654829PMC
http://dx.doi.org/10.1039/c3lc41202dDOI Listing

Publication Analysis

Top Keywords

microfluidic flow
8
flow focusing
8
microfluidic channel
8
microfluidic
7
flow
5
channel
5
universally applicable
4
applicable three-dimensional
4
three-dimensional hydrodynamic
4
hydrodynamic microfluidic
4

Similar Publications

Advances in fluidic droplet generation both necessitate and enable accessible, high throughput methods to optimize formulations by measuring surface tension. One fluidic approach involves creating extensional flow using constrictions. Droplets deform within a constriction, and then experience extensional flow upon exiting into a wider channel.

View Article and Find Full Text PDF

Pores scale flows through contractions and expansions are relevant in geoengineering, microfluidics and material processing These flows experience shearing and extensional kinematics near constrictions, where polymer solutions may demonstrate instabilities that arise from the fluid's nonlinear rheological characteristics even in creeping flows. The relative effect of shearing and extension can be controlled by the flow geometry. Following our earlier reports on the constriction length (M.

View Article and Find Full Text PDF

Droplet splitting plays an important role in droplet microfluidics by providing precise control over droplet size, which is essential for applications such as single-cell analysis, biochemical reactions, and the fabrication of micro- and nanosized material. Conventional methods of droplet splitting using obstructions or junctions in the microchannel have a clear limitation that the split ratio for a particular device remains fixed, while existing active splitting methods are constrained by low flow rates, the need for complex systems, or limitations to specific droplet types. In this study, we demonstrate that droplet splitting can be achieved simply using a one-dimensional standing-wave field excited within a microchannel.

View Article and Find Full Text PDF

In-situ microemulsion has shown great potential for remediation of dense non-aqueous phase liquids (DNAPLs) contaminated aquifers due to the capacity to enhance DNAPL solubility and mobility. Understanding the pore-scale removal behavior of DNAPL and quantifying proportions of mobilization/solubilization in flushing process are essential to improve remediation efficiency. However, owing to the opacity of aquifer medium, the sand columns commonly used in flushing experiments are hard to reveal the dynamic behaviors and removal mechanism of DNAPLs in aquifer by in-situ microemulsion.

View Article and Find Full Text PDF

The transition from reconstructive to regenerative strategies in vascular surgery has intensified the need for grafts that are biocompatible, growth-capable, and resistant to thrombosis. Addressing this challenge, Park et al. introduce a groundbreaking method for engineering fully biological, endothelialized tissue-engineered vascular conduits (TEVCs) using decellularized human umbilical arteries (dHUAs) coated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs).

View Article and Find Full Text PDF