98%
921
2 minutes
20
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623562 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2013.01.012 | DOI Listing |
BMC Health Serv Res
September 2025
African Population and Health Research Center (APHRC), APHRC Campus, 2nd Floor, Manga Close off Kirawa Road, P.O. Box 10787-00100, Nairobi, Kenya.
Background: Maternal healthcare (MHC) in Cameroon reflects the persistent challenges in Sub-Saharan Africa, where high maternal mortality continues despite improved service utilization, stressing inequitable effective coverage (EC). This study applied EC cascade analysis-including service contact, continuity, and input-adjusted coverage-to quantify geographic and socioeconomic disparities, informing equity-focused strategies to dismantle structural barriers in the MHC continuum.
Methods: We combined population and health facility data (2018 Cameroon Demographic and Health Survey and 2015 Emergency Obstetric and Neonatal Care Assessment) to estimate the input-adjusted coverage of antenatal care (ANC) and intra-and postpartum care (IPC).
J Youth Adolesc
September 2025
Substantive-Methodological Synergy Research Laboratory, Concordia University, Montreal, QB, Canada.
Young adults use a combination of coping strategies to deal with challenges. Yet, limited research has focused on these combinations, as they differ across different profiles of youth and their implications during the major life transitions of emerging adulthood. Addressing this gap, the present longitudinal person-centered study assesses the nature, stability, predictors (stressful life events, sex), and outcomes (affect, attitude toward life, physical symptoms) of coping profiles during this period.
View Article and Find Full Text PDFJ Refract Surg
September 2025
From National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: To use parametric numerical simulation to characterize and compare the differences in corneal biomechanical responses to laser in situ keratomileusis (LASIK) and keratorefractive lenticule extraction (KLEx) under various surgical settings.
Methods: The Finite Element Model was used in a parametric study to evaluate corneal biomechanical responses to LASIK and KLEx, considering variations in preoperative corneal thickness, corneal flap/cap thickness and diameter, refractive correction, and optical zone diameter. Surgery-induced stress, displacement, and interface contact pressure were compared between LASIK and KLEx using the Wilcoxon signed-rank test.
FASEB J
September 2025
Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, The University of Osaka, Osaka, Japan.
In bone marrow, cell numbers are balanced between production and loss. After chemotherapy, blood cell counts decrease initially but later recover as hematopoietic progenitor cells expand, although the mechanisms underlying this recovery are still unclear. We investigated the influence of red blood cells (RBCs) on hematopoietic stem cell (HSC) function during bone marrow recovery.
View Article and Find Full Text PDFOdontology
September 2025
Department of Biomaterials, Hamidiye Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Turkey.
This study evaluates the cytotoxicity, apoptosis, and expression of stress-related genes (TP53 and NF-κB) in response to gingiva-colored indirect composite resins used for veneering tooth or implant-supported prostheses or characterization of denture bases. A total of 120 disc-shaped specimens (2 mm thick, 10 mm diameter) gingiva-colored indirect composite resin specimens (Group A: Anaxgum-Anaxdent, Group B: Crealing Paste Gum-Bredent, Group G: Gradia Gum-GC, Group N: SR Nexco GUM-Ivoclar Vivadent) were prepared and divided into four groups (n = 10 per group). Surface wettability was assessed using water contact angle (WCA) measurements.
View Article and Find Full Text PDF