Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emerging lineage-tracing data support the existence of several pools of intestinal stem cells (ISCs) in the adult mouse. The +4 location is known to harbor proliferative cells undergoing robust apoptosis in response to irradiation, but their relationship with recently reported ISC models is unclear. Here, we found that tamoxifen, at doses commonly used to induce lineage tracing, mimics the irradiation-induced apoptotic response of the +4 cells. We found that about 40% of apoptotic cells were Lgr5-positive whereas Bmi1-positive ISCs became sensitive to tamoxifen upon entering a proliferative state. In turn, when we suppressed apoptosis by either Bcl2 overexpression or Chk2 deletion, we found that lineage tracing of Lgr5-positive cells was efficiently reduced. In contrast, lineage tracing from Bmi1-positive ISCs was substantially increased in apoptosis-deficient backgrounds. We propose that apoptosis plays an important role in controlling lineage tracing from different ISC populations in the mouse intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2013.01.003DOI Listing

Publication Analysis

Top Keywords

lineage tracing
20
intestinal stem
8
bmi1-positive iscs
8
lineage
5
tracing
5
cells
5
apoptosis
4
apoptosis differently
4
differently lineage
4
tracing lgr5
4

Similar Publications

Hormonal regulation of cell fate plasticity of xylem-pole-pericycle lineage in Arabidopsis roots.

Mol Plant

September 2025

Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:

In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.

View Article and Find Full Text PDF

Uncovering new lineages in the Sunda pangolin () with museum mitogenomics.

Biol Lett

September 2025

Department of Vertebrate Zoology, Division of Mammals, Smithsonian National Museum of Natural History, Washington, DC, USA.

Accurately identifying evolutionarily significant units (ESUs) is crucial for conservation planning, especially for species like pangolins threatened by overhunting and habitat loss. ESUs help categorize different pangolin populations, aiding in understanding their genetic diversity and distribution, which is vital for targeted conservation efforts. This research generated mitochondrial genomes from historical museum specimens of Sunda pangolins () from underrepresented locations, uncovering a new evolutionary lineage from the Mentawai Islands that diverged from Indochina and west Sundaland populations around 760 000 years ago.

View Article and Find Full Text PDF

Adrenal lipoma formation via PI(3,4,5)P/AKT-dependent transdifferentiation of adrenocortical cells into adipocytes.

Proc Natl Acad Sci U S A

September 2025

Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).

View Article and Find Full Text PDF

Single-cell transcriptome combined with genetic tracing reveals a roadmap of fibrosis formation during proliferative vitreoretinopathy.

Proc Natl Acad Sci U S A

September 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer

Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.

View Article and Find Full Text PDF

Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.

View Article and Find Full Text PDF