Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A single-nucleotide polymorphism (rs2274223: A5780G:His1927Arg) in the phospholipase C epsilon gene (PLCϵ) was recently identified as a susceptibility locus for esophageal cancer in Chinese subjects. To determine the underlying mechanisms of PLCϵ and this SNP in esophageal carcinogenesis, we analyzed PLCϵ genotypes, expression, and their correlation in esophageal cancer cell lines, non-transformed esophageal cells, 58 esophageal squamous cell carcinomas and 10,614 non-cancer subjects from China. We found that the G allele (AG or GG) was associated with increased PLCϵ mRNA and protein expression in esophageal cancer tissues and in esophageal cancer cell lines. G allele was also associated with higher enzyme activity, which might be associated with increased protein expression. Quantitative analysis of the C2 domain sequences revealed that A:G allelic imbalance was strongly linked to esophageal malignancy. Moreover, the analysis of 10,614 non-cancer subjects demonstrated that the G allele was strongly associated with moderate to severe esophagitis in the subjects from the high-incidence areas of China (OR 6.03, 95% CI 1.59-22.9 in high-incidence area vs. OR 0.74, 95% CI 0.33-1.64 in low-incidence area; P = 0.008). In conclusion, the PLCϵ gene, particularly the 5780G allele, might play a pivotal role in esophageal carcinogenesis via upregulating PLCϵ mRNA, protein, and enzyme activity, and augmenting inflammatory process in esophageal epithelium. Thus, 5780G allele may constitute a promising biomarker for esophageal squamous cell carcinoma risk stratification, early detection, and progression prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931523PMC
http://dx.doi.org/10.1002/mc.22016DOI Listing

Publication Analysis

Top Keywords

esophageal cancer
16
esophageal
12
allele associated
12
phospholipase epsilon
8
esophageal carcinogenesis
8
cancer cell
8
cell lines
8
esophageal squamous
8
squamous cell
8
10614 non-cancer
8

Similar Publications

Introduction: There are no reports of patients undergoing McKeown esophagectomy for esophageal cancer after undergoing pancreaticoduodenectomy for pancreatic cancer. We report the case of a patient who underwent subtotal esophagectomy and colon reconstruction after pancreaticoduodenectomy using the mesenteric approach.

Case Presentation: A 71-year-old male was diagnosed with advanced esophageal cancer.

View Article and Find Full Text PDF

Esophageal-respiratory fistulae are abnormal communications between the esophagus and the respiratory tract, most commonly appearing as tracheoesophageal or bronchoesophageal fistulas. Esophago-pulmonary fistulas represent a rare subtype, typically associated with malignancy, and may lead to severe complications such as lung abscesses. We report a case of a 58-year-old male patient who presented with a two-week history of fever, foul-smelling mucoid sputum, dyspnea, dysphagia, and weight loss.

View Article and Find Full Text PDF

Novel role of MKRN2 in regulating tumor growth through host microenvironment and macrophage M1 to M2 switch.

Cancer Lett

September 2025

State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,

The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.

View Article and Find Full Text PDF

Single-cell analysis of Barrett's esophagus and carcinoma reveals cell types conferring risk via genetic predisposition.

Cell Genom

September 2025

Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. Electronic address:

Inherited genetic variants contribute to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), but it is unknown which cell types are involved in this process. We performed single-cell RNA sequencing of BE, EAC, and paired normal tissues and integrated genome-wide association data to determine cell-type-specific genetic risk and cellular processes that contribute to BE and EAC. The analysis reveals that EAC development is driven to a greater extent by local cellular processes than BE development and suggests that one cell type of BE origin (intestinal metaplasia cells) and cellular processes that control the differentiation of columnar cells are of particular relevance for EAC development.

View Article and Find Full Text PDF