Ligand-mediated self-assembly of hybrid plasmonic and superparamagnetic nanostructures.

Langmuir

The Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA.

Published: February 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hybrid nanostructures with unique optical and magnetic properties have attracted considerable interest as effective mediators for medical imaging and therapy. An aqueous-based, self-assembly approach to synthesizing hybrid plasmonic-superparamagnetic nanostructures is presented. The building blocks of the hybrid nanostructure include plasmonic gold nanorods (AuNRs) and superparamagnetic iron oxide nanoparticles (SPIONs). The AuNRs were functionalized via carboxyl-bearing surface ligands, and the SPIONs were kept "bare" after synthesis via a surfactant-free thermal decomposition reaction in triethylene glycol. Hybrid SPION-studded AuNR nanostructures were produced upon simple mixing of the components because of the chemisorption of the AuNRs' free carboxyl groups to the SPIONs' surfaces. The reported synthesis strategy is modular in nature and can be expanded to build hybrid nanostructures with a multitude of other plasmonic nanoparticles. With tunable near-infrared absorption peaks and a sufficient number of bound SPIONs, the self-assembled hybrid nanostructures are suitable for biomedical imaging and therapy applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594096PMC
http://dx.doi.org/10.1021/la3037549DOI Listing

Publication Analysis

Top Keywords

hybrid nanostructures
12
imaging therapy
8
hybrid
7
nanostructures
6
ligand-mediated self-assembly
4
self-assembly hybrid
4
hybrid plasmonic
4
plasmonic superparamagnetic
4
superparamagnetic nanostructures
4
nanostructures hybrid
4

Similar Publications

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.

View Article and Find Full Text PDF

Background: Aflatoxin B1 (AFB1) is a highly carcinogenic mycotoxin frequently found in contaminated food products, posing a significant threat to public health and food safety. Therefore, the development of rapid, sensitive, and reliable detection methods for AFB1 is critical for early warning and prevention. However, traditional detection techniques often require expensive equipment, skilled personnel, and complex procedures, limiting their suitability for on-site applications.

View Article and Find Full Text PDF