98%
921
2 minutes
20
The emergence/re-emergence of infectious diseases has been one of the major concerns for human and wildlife health. In spite of the medical and veterinary progresses as to prevent and cure infectious diseases, during the last decades we have witnessed the emergence/re-emergence of virulent pathogens that pose a threat to humans and wildlife. Many factors that might drive the emergence of these novel pathogens have been identified and several reviews have been published on this topic in the last years. Among the most cited and recognized drivers of pathogen emergence are climate change, habitat destruction, increased contact with reservoirs, etc. These factors mostly refer to environmental determinants of emergence. However, the immune system of the host is probably the most important environmental trait parasites have to cope with. Here, we wish to discuss how immune-mediated selection might affect the emergence/re-emergence of infectious diseases and drive the evolution of disease severity. Vaccination, natural (age-associated) and acquired immunodeficiencies, organ transplantation, environmental contamination with chemicals that disrupt immune functions form populations of hosts that might exert specific immune-mediated selection on a range of pathogens, shaping their virulence and evolution, and favoring their spread to other populations of hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meegid.2012.12.031 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
J Clin Invest
September 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.
View Article and Find Full Text PDFMicrob Genom
September 2025
Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu, Shizuoka 432-8561, Japan.
Proc Natl Acad Sci U S A
September 2025
Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Stanford University, Stanford, CA 94305.
Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.
View Article and Find Full Text PDF