Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Secondary diversification of the B cell repertoire by immunoglobulin gene somatic hypermutation in the germinal center (GC) is essential for providing the high-affinity antibody specificities required for long-term humoral immunity. While the risk to self-tolerance posed by inadvertent generation of self-reactive GC B cells has long been recognized, it has not previously been possible to identify such cells and study their fate. In the current study, self-reactive B cells generated de novo in the GC failed to survive when their target self-antigen was either expressed ubiquitously or specifically in cells proximal to the GC microenvironment. By contrast, GC B cells that recognized rare or tissue-specific self-antigens were not eliminated, and could instead undergo positive selection by cross-reactive foreign antigen and produce plasma cells secreting high-affinity autoantibodies. These findings demonstrate the incomplete nature of GC self-tolerance and may explain the frequent association of cross-reactive, organ-specific autoantibodies with postinfectious autoimmune disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2012.07.017DOI Listing

Publication Analysis

Top Keywords

self-reactive cells
12
cells
7
elimination germinal-center-derived
4
germinal-center-derived self-reactive
4
cells governed
4
governed location
4
location concentration
4
concentration self-antigen
4
self-antigen secondary
4
secondary diversification
4

Similar Publications

Background And Aim: Atherosclerosis has an auto-immune component driven by self-reactive T and B cells. Identifying their antigenic drivers may lead to new diagnosis and treatment approaches. Here, we aim to identify immunogenic T cell epitopes derived from atherosclerosis-relevant proteins such as ApoB100 by studying the repertoire of peptides presented by HLA in human plaques.

View Article and Find Full Text PDF

Background: In autoimmune disease it is not understood how self-reactive B cells escape immune tolerance checkpoints to produce pathogenic autoantibodies.

Objective: In patients with demyelinating polyneuropathy caused by IgM autoantibodies against myelin associated glycoprotein (MAG) and the sulphated trisaccharide CD57, we aimed to test the hypothesis that B cells making the autoantibody escaped tolerance by acquiring lymphoma driver somatic mutations.

Methods: Deep single-cell RNA, DNA, flow cytometric and antibody specificity analysis of blood from three patients with MAG neuropathy.

View Article and Find Full Text PDF

The thymus is critical for the development and selection of T cells with a diverse range of non-self-reactive antigen receptors. Both the thymus and circulating T cells can be damaged by acute exposure to ionizing radiation, leading to dose-dependent lymphopenia, a temporarily increased risk of infection that can be life-threatening, and long-term disruptions in T cell homeostasis and function. Currently, there are no biomedical countermeasures available to prevent radiation-induced T cell lymphopenia or other T cell defects caused by radiation.

View Article and Find Full Text PDF

Objective: Autoimmune nodopathies (AINs) are a group of rare, acquired autoimmune neuropathies with distinct clinical features and the presence of circulating autoantibodies - often of the immunoglobulin G4 (IgG4) subclass - targeting proteins at the node of Ranvier. Defects in B cell tolerance checkpoints have been implicated in several autoimmune diseases. Prior work identified defective B cell tolerance-reflected by a high frequency of self-reactive naïve B cells-in patients with MuSK-positive myasthenia gravis (MG), mediated by IgG4 autoantibodies.

View Article and Find Full Text PDF

The thymus is a primary lymphoid organ generating self-restricted and self-tolerant naïve T cells. Early in life the thymus starts to involute, resulting in decreased naïve T cell output which may be more self-reactive, leading to an increased prevalence of autoimmunity. A decrease in the transcription factor FOXN1 is an early event in thymic involution.

View Article and Find Full Text PDF