The thymus is a primary lymphoid organ generating self-restricted and self-tolerant naïve T cells. Early in life the thymus starts to involute, resulting in decreased naïve T cell output which may be more self-reactive, leading to an increased prevalence of autoimmunity. A decrease in the transcription factor FOXN1 is an early event in thymic involution.
View Article and Find Full Text PDFActive immune suppression can mediate the balance between protective cellular immunity and harmful immunopathology. This suppression can occur locally, at an infection site, or in regional draining lymph nodes (dLNs). Immune regulation is of particular importance in sites such as the lung where aberrant immunopathology can result in loss of tissue function and respiratory failure.
View Article and Find Full Text PDFColonization resistance, also known as pathogen interference, describes the ability of a colonizing microbe to interfere with the ability of an incoming microbe to establish infection, and in the case of pathogenic organisms, cause disease in a susceptible host. Furthermore, colonization-associated dysbiosis of the commensal microbiota can alter host immunocompetence and infection outcomes. Here, we investigated the role of Bordetella bronchiseptica nasal colonization and associated disruption of the nasal microbiota on the ability of influenza A virus to establish infection in the murine upper respiratory tract.
View Article and Find Full Text PDFNatural Killer (NK) cells are among the first effectors to directly contact influenza and influenza-infected cells and their activation affects not only their intrinsic functions, but also subsequent CD8 T cell responses. We utilized a NK cell depletion model to interrogate the contribution of NK cells to the development of anti-influenza CD8 T cell memory. NK cell ablation increased the number of influenza-specific memory CD8 T cells in the respiratory tract and lung-draining lymph node.
View Article and Find Full Text PDFDuring type 1 immune responses, CD4 T helper 1 (Th1) cells and CD8 T cells are activated via IL-12 and contribute to the elimination of intracellular pathogens through interferon gamma (IFNγ) production. In this study, we identified Placenta-specific 8 (Plac8) as a gene that is uniquely expressed in Th1 CD4 T cells relative to other CD4 T cell subsets and hypothesized that Plac8 may represent a novel therapeutic target in Th1 CD4 T cells. First, we determined that Plac8 mRNA in CD4 T cells was induced following IL-12 stimulation via an indirect route that required new protein synthesis.
View Article and Find Full Text PDFOur understanding of memory CD8 T cells has been largely derived from acute, systemic infection models. However, memory CD8 T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8 T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.
View Article and Find Full Text PDFThe yearly, cyclic impact of viruses like influenza on human health and the economy is due to the high rates of mutation of traditional antibody targets, which negate any preexisting humoral immunity. However, the seasonality of influenza infections can equally be attributed to an absent or defective memory CD8 T cell response since the epitopes recognized by these cells are derived from essential virus proteins that mutate infrequently. Experiments in mouse models show that protection from heterologous influenza infection is temporally limited and conferred by a population of tissue-resident memory (T) cells residing in the lung and lung airways.
View Article and Find Full Text PDFResident memory T cells (TRM) are broadly defined as a population of T cells, which persist in non-lymphoid sites long-term, do not re-enter the circulation, and are distinct from central memory T cells (TCM) and circulating effector memory T cells (TEM). Recent studies have described populations of TRM cells in the skin, gut, lungs, and nervous tissue. However, it is becoming increasingly clear that the specific environment in which the TRM reside can further refine their phenotypical and functional properties.
View Article and Find Full Text PDFMucosally produced thymic stromal lymphopoietin (TSLP) regulates Th2 responses by signaling to dendritic cells and CD4 T cells. Activated CD8 T cells express the TSLP receptor (TSLPR), yet a direct role for TSLP in CD8 T cell immunity in the mucosa has not been described. Because TSLP shares signaling components with IL-7, a cytokine important for the development and survival of memory CD8 T cells in systemic infection models, we hypothesized that TSLP spatially and nonredundantly supports the development of these cells in the respiratory tract.
View Article and Find Full Text PDFImmune tolerance and activation depend on precise control over the number and function of immunosuppressive Foxp3(+) regulatory T (T reg) cells, and the importance of IL-2 in maintaining tolerance and preventing autoimmunity is clear. However, the homeostatic requirement for IL-2 among specific populations of peripheral T reg cells remains poorly understood. We show that IL-2 selectively maintains a population of quiescent CD44(lo)CD62L(hi) T reg cells that gain access to paracrine IL-2 produced in the T cell zones of secondary lymphoid tissues due to their expression of the chemokine receptor CCR7.
View Article and Find Full Text PDFInfluenza infection induces an increase in the level of indoleamine 2,3-dioxygenase (IDO) activity in the lung parenchyma. IDO is the first and rate-limiting step in the kynurenine pathway where tryptophan is reduced to kynurenine and other metabolites. The depletion of tryptophan, and production of associated metabolites, attenuates the immune response to infection.
View Article and Find Full Text PDFAn effective immune response to an invading viral pathogen requires the combined actions of both innate and adaptive immune cells. For example, NK cells and cytotoxic CD8 T cells are capable of the direct engagement of infected cells and the mediation of antiviral responses. Both NK and CD8 T cells depend on common gamma chain (γc) cytokine signals for their development and homeostasis.
View Article and Find Full Text PDFFollowing influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways.
View Article and Find Full Text PDFEffective vaccines against intracellular pathogens rely on the generation and maintenance of memory CD8 T cells (T(mem)). Hitherto, evidence has indicated that CD8 T(mem) use the common γ-chain cytokine IL-15 for their steady-state maintenance in the absence of Ag. This evidence, however, has been amassed predominantly from models of acute, systemic infections.
View Article and Find Full Text PDFThe cytokines generated locally in response to infection play an important role in CD8 T cell trafficking, survival, and effector function, rendering these signals prime candidates for immune intervention. In this paper, we show that localized increases in the homeostatic cytokine IL-15 induced by influenza infection is responsible for the migration of CD8 effector T cells to the site of infection. Moreover, intranasal delivery of IL-15-IL-15Rα soluble complexes (IL-15c) specifically restores the frequency of effector T cells lost in the lung airways of IL-15-deficient animals after influenza infection.
View Article and Find Full Text PDFBackground: The post-translational addition of the monosaccharide O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates the activity of a wide variety of nuclear and cytoplasmic proteins. The enzymes O-GlcNAc Transferase (Ogt) and O-GlcNAcase (Oga) catalyze, respectively, the attachment and removal of O-GlcNAc to target proteins. In adult mice, Ogt and Oga attenuate the response to insulin by modifying several components of the signal transduction pathway.
View Article and Find Full Text PDFWhether memory CD8 T cells can be reactivated in nonlymphoid tissues is unclear. Using mice lacking the spleen, lymph nodes, or both, we show that the secondary T cell response, but not homeostatic maintenance of memory cells, required lymphoid tissue. Whereas primary and secondary CD8 T cell responses to vesicular stomatitis virus infection were lymph node dependent, responses to Listeria monocytogenes infection were driven primarily in the spleen.
View Article and Find Full Text PDFSecondary lymphoid organs (SLOs) promote primary immune responses by recruiting naive lymphocytes and activated APCs. However, their role in the persistence or responsiveness of memory lymphocytes is unclear. We tested whether memory cells were maintained and could respond to challenge in the absence of SLOs.
View Article and Find Full Text PDFExpression of IL-7Ralpha on a subset of Ag-specific effector CD8 T cells is believed to identify memory cell precursors. However, whether IL-7 regulates IL-7Ralpha expression in vivo and is responsible for selective survival of IL-7Ralpha(+) effector cells is unknown. Our results show that in the absence of IL-7, IL-7Ralpha expression was extinguished on the majority of CD8 T cells responding to virus infection, sustained on a subset of effector cells transitioning to memory, and expressed at high levels by memory cells.
View Article and Find Full Text PDFActivated virus-specific CD8 T cells remain in the lung airways for several months after influenza virus infection. We show that maintenance of this cell population is dependent upon the route of infection and prolonged presentation of viral antigen in the draining lymph nodes (DLN) of the respiratory tract. The local effects on T cell migration have been examined.
View Article and Find Full Text PDFMemory T cells can be divided into central memory T cell (T(CM) cell) and effector memory T cell (T(EM) cell) subsets based on homing characteristics and effector functions. Whether T(EM) and T(CM) cells represent interconnected or distinct lineages is unclear, although the present paradigm suggests that T(EM) and T(CM) cells follow a linear differentiation pathway from naive T cells to effector T cells to T(EM) cells to T(CM) cells. We show here that naive T cell precursor frequency profoundly influenced the pathway along which CD8+ memory T cells developed.
View Article and Find Full Text PDFThe ability of memory CD8 T cells to patrol non-lymphoid tissues represents an effective method whereby proficient immunosurveillance is achieved. From the analysis of memory CD8 T cell migration in vivo, it is clear that tissue-specific factors control trafficking and residence time within tissues. We propose that at least three pools of memory CD8 T cells exist based on migratory capabilities as dictated by their location in the body.
View Article and Find Full Text PDFThe role of CD4 T cells in providing help to CD8 T cells in primary and secondary responses to infection remains controversial. Using recombinant strains of virus and bacteria expressing the same Ag, we determined the requirement for CD4 T cells in endogenous CD8 T cell responses to infection with vesicular stomatitis virus and Listeria monocytogenes (LM). Depletion of CD4 T cells had no effect on the frequency of primary or secondary vesicular stomatitis virus-specific CD8 T cells in either lymphoid or nonlymphoid tissues.
View Article and Find Full Text PDF