98%
921
2 minutes
20
Shell calcification in argonauts is unique. Only females of these cephalopods construct the paper nautilus shell, which is used as a brood chamber for developing embryos in the pelagic realm. As one of the thinnest (225 μm) known adult mollusc shells, and lacking an outer protective periostracum-like cover, this shell may be susceptible to dissolution as the ocean warms and decreases in pH. Vulnerability of the A. nodosa shell was investigated through immersion of shell fragments in multifactorial experiments of control (19 °C/pH 8.1; pCO(2) 419; Ω(Ca) = 4.23) and near-future conditions (24 °C/pH 7.8-7.6; pCO(2) 932-1525; Ω(Ca) = 2.72-1.55) for 14 days. More extreme pH treatments (pH 7.4-7.2; pCO(2) 2454-3882; Ω(Ca) = 1.20-0.67) were used to assess tipping points in shell dissolution. X-ray diffractometry revealed no change in mineralogy between untreated and treated shells. Reduced shell weight due to dissolution was evident in shells incubated at pH 7.8 (projected for 2070) after 14 days at control temperature, with increased dissolution in warmer and lower pH treatments. The greatest dissolution was recorded at 24 °C (projected for local waters by 2100) compared to control temperature across all low-pH treatments. Scanning electron microscopy revealed dissolution and etching of shell mineral in experimental treatments. In the absence of compensatory mineralization, the uncovered female brood chamber will be susceptible to dissolution as ocean pH decreases. Since the shell was a crucial adaptation for the evolution of the argonauts' holopelagic existence, persistence of A. nodosa may be compromised by shell dissolution in an ocean-change world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/BBLv223n2p236 | DOI Listing |
Inorg Chem
September 2025
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China.
Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Pd-zeolites are promising passive NO adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core-shell Pd/SSZ-13@AlO composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous AlO shell.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia.
The increasing concern over environmental pollution from brake dust and the adverse impacts of conventional brake pad materials, such as metallic, semi-metallic, and ceramic composites, has prompted the exploration of more sustainable alternatives. Traditional brake pads release harmful non-exhaust emissions that contribute to air pollution and wear down quickly, posing both environmental and operational challenges. This study investigates the development and performance evaluation of polymer friction composites enhanced with natural friction modifiers sourced from agricultural waste materials like walnut shell, coconut shell, and groundnut shell powders.
View Article and Find Full Text PDFOrg Lett
September 2025
Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
A fused octapyrrolylanthracene, representing a nonplanar pyrrole-fused aza-nanographene with two deep gulf-edge regions, was readily synthesized and found to exhibit a ladder-shaped bent structure. Electrochemical studies revealed reversible multielectron oxidation up to four electrons. Stepwise oxidation with AgPF or I afforded a singlet diradical dication and a closed-shell aromatic tetracation.
View Article and Find Full Text PDFJ Proteome Res
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.
View Article and Find Full Text PDF