Proc Natl Acad Sci U S A
March 2025
Variability in predator-prey interactions can modulate population dynamics with impacts scalable to entire ecosystems. As notorious corallivores, crown-of-thorns sea stars (CoTS; spp.) have caused extensive losses of coral habitat during unexplained population outbreaks across the Indo-Pacific.
View Article and Find Full Text PDFDisturbances on coral reefs-which are increasing in intensity and frequency-generate material legacies. These are commonly in the form of rubble beds, which depend on rubble stability and/or binding to facilitate coral recruitment and recovery. Yet, our understanding of rubble stability and binding dynamics across environmental gradients is limited.
View Article and Find Full Text PDFMar Environ Res
November 2024
Critical loss of habitat is the greatest threat to biodiversity, yet some species are inherently plastic to and may even benefit from changes in ecosystem states. The crown-of-thorns sea star (CoTS; Acanthaster spp.) may be one such organism.
View Article and Find Full Text PDFPatterns of movement of marine species can reflect strategies of reproduction and dispersal, species' interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa are greatest in dead coral and rubble, which are suggested to fuel food webs from the bottom up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels.
View Article and Find Full Text PDFJ Anim Ecol
November 2022
Biodiversity of terrestrial and marine ecosystems, including coral reefs, is dominated by small, often cryptic, invertebrate taxa that play important roles in ecosystem structure and functioning. While cryptofauna community structure is determined by strong small-scale microhabitat associations, the extent to which ecological and environmental factors shape these communities are largely unknown, as is the relative importance of particular microhabitats in supporting reef trophodynamics from the bottom up. The goal of this study was to address these knowledge gaps, provided coral reefs are increasingly exposed to multiple disturbances and environmental gradients that influence habitat complexity, condition and ecosystem functioning.
View Article and Find Full Text PDFAbstractCrown-of-thorns sea stars ( sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of sp.
View Article and Find Full Text PDFMicroorganisms are fundamental drivers of biogeochemical cycling, though their contribution to coral reef ecosystem functioning is poorly understood. Here, we infer predictors of bacterioplankton community dynamics across surface-waters of the Great Barrier Reef (GBR) through a meta-analysis, combining microbial with environmental data from the eReefs platform. Nutrient dynamics and temperature explained 41.
View Article and Find Full Text PDFGlobally, millions of people depend on nutritional benefits from seafood consumption, but few studies have tested for effects of near-future climate change on seafood health and quality. Quantitative assessments of the interactive effects of climate change and discarding of fisheries resources are also lacking, despite ~10% of global catches being discarded annually. Utilising the harvested blue swimmer crab (Portunus armatus), we experimentally tested the effects of near-future temperature and salinity treatments under simulated capture and discarding on a suite of health and nutritional quality parameters.
View Article and Find Full Text PDFCoastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change.
View Article and Find Full Text PDFRecreational fishing practices can have significant impacts on marine ecosystems but their catch dynamics are often difficult to quantify, particularly for spearfishing. On coral reefs, the impacts of recreational spearfishing are often considered to be negligible compared to other practices, but the highly selective method adopted by spearfishers can result in locally distinct ecological consequences. Here we investigated the spatial patterns and catch composition of recreational spearfishers on the Great Barrier Reef using an online survey (n = 141 participants) targeted at spearfishers active along the coastline of Queensland.
View Article and Find Full Text PDFCoral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef.
View Article and Find Full Text PDFThe effects of global change on biological systems and functioning are already measurable, but how ecological interactions are being altered is poorly understood. Ecosystem resilience is strengthened by ecological functionality, which depends on trophic interactions between key species and resilience generated through biogenic buffering. Climate-driven alterations to coral reef metabolism, structural complexity and biodiversity are well documented, but the feedbacks between ocean change and trophic interactions of non-coral invertebrates are understudied.
View Article and Find Full Text PDFCrown-of-thorns starfish, Acanthaster planci (COTS), predation is a major cause of coral reef decline, but the factors behind their population outbreaks remain unclear. Increased phytoplankton food resulting from eutrophication is suggested to enhance larval survival. We addressed the hypothesis that larval success is associated with particular chl-a levels in tightly controlled larval:algal conditions.
View Article and Find Full Text PDFGlob Chang Biol
December 2016
Due to climatic warming, Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high-risk invader of the sub-Antarctic and Antarctic. To assess the potential range expansion of A. amurensis to the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages.
View Article and Find Full Text PDFApproximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω.
View Article and Find Full Text PDFHigh density populations of the crown-of-thorns seastar, Acanthaster planci, are a major contributor to the decline of coral reefs, however the causes behind periodic outbreaks of this species are not understood. The enhanced nutrients hypothesis posits that pulses of enhanced larval food in eutrophic waters facilitate metamorphic success with a flow-on effect for population growth. The larval resilience hypothesis suggests that A.
View Article and Find Full Text PDFCo-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.
View Article and Find Full Text PDFShell calcification in argonauts is unique. Only females of these cephalopods construct the paper nautilus shell, which is used as a brood chamber for developing embryos in the pelagic realm. As one of the thinnest (225 μm) known adult mollusc shells, and lacking an outer protective periostracum-like cover, this shell may be susceptible to dissolution as the ocean warms and decreases in pH.
View Article and Find Full Text PDF