Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths.

Materials And Methods: This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic).

Results: Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field.

Conclusion: Static magnetic fields as high as 7.0 T did not have a significant effect on cognition.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.12112172DOI Listing

Publication Analysis

Top Keywords

static magnetic
20
magnetic fields
16
field strength
16
case-crossover study
8
field
8
field strengths
8
cognitive functions
8
sensory perceptions
8
magnetic
7
static
6

Similar Publications

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Static Magnetic Field Promotes Wheat Nitrogen Assimilation by Repressing Jasmonates Biosynthesis Through TaHY5.

Plant Biotechnol J

September 2025

College of Agronomy, Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, China.

The magnetic field is a continuously present environmental factor. It has been found that many species, including plants, can sense and utilise it. However, the effects of the magnetic field on plants and its potential utilisation, especially in crops, have been little explored.

View Article and Find Full Text PDF

Magnetic Excitations of a Nodally-Hybridized Heavy-Fermion SemiMetal: Application to CeNiSn.

J Phys Condens Matter

September 2025

Department of Physics, Temple University, Barton Hall, Philadelphia, PA 19122-6082, USA, Philadelphiaa, Pennsylvania, 19122, UNITED STATES.

We examine the magnetic excitations of an Anderson lattice model with a Vshaped pseudogap arising from nodal hybridization. The model produces a V-shaped pseudogap in the electronic density of states near the Fermi energy. It lies close to an antiferromagnetic quantum critical point and features lowdimensional Fermi surfaces, aligning with experimental observations of CeNiSn.

View Article and Find Full Text PDF

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF