Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of a pseudorotaxane motif capable of performing unidirectional threading and dethreading processes under control of external stimuli is particularly important for the construction of processive linear motors based on rotaxanes and, at least in principle, it discloses the possibility to access to rotary motors based on catenanes. Here, we report a strategy to obtain the solvent-controlled unidirectional transit of a molecular axle through a molecular wheel. It is based on the use of appropriately designed molecular components, the essential feature of which is their non-symmetric structure. Specifically they are an axle containing a central electron-acceptor 4,4'-bipyridinium core functionalized with a hexanol chain at one side, and a stilbene unit connected through a C6 chain at the other side, and a heteroditopic tris(phenylureido)-calix[6]arene wheel. In apolar solvents the axle threads into the wheel from its upper rim and with the end carrying the OH group, giving an oriented pseudorotaxane structure. After a stoppering reaction, which replaces the small hydroxy group with a bulky diphenylacetyl moiety, and replacement of the apolar solvent with a polar one, dethreading occurs through the slippage of the stilbene unit from the lower rim of the wheel, that is, in the same direction of the threading process. The essential role played by the stilbene unit to achieve the unidirectional transit of the axle through the wheel, and to tune the dethreading rate by light is also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201201625DOI Listing

Publication Analysis

Top Keywords

unidirectional transit
12
stilbene unit
12
nonsymmetric molecular
8
molecular axle
8
molecular wheel
8
motors based
8
chain side
8
wheel
6
molecular
5
axle
5

Similar Publications

Uncovering nonlinear causal relationships and propagation dynamics of drought types in Xinjiang using convergent cross mapping.

J Environ Manage

September 2025

College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi, 830052, China. Electronic address:

Drought is one of the most destructive natural disasters globally. Understanding its propagation mechanisms and the causal relationships among different drought types is crucial for effective monitoring and mitigation. Using meteorological (SPI), hydrological (SRI), and agricultural (SSMI) drought indices from 1983 to 2023 in Xinjiang, this study employs the Convergent Cross Mapping (CCM) method to systematically quantify nonlinear causal relationships among the three drought types, revealing their temporal lag characteristics, spatial heterogeneity, and multiscale dynamics.

View Article and Find Full Text PDF

Unidirectional topological behavior, engendered by imposing topological operations winding around an exceptional point, is sensitive to dark modes, which allow deactivating topological operations, resulting in a complete blockade of both mode conversion and phonon transfer between dark and bright modes. Here we demonstrate how to beat this challenge and achieve a versatile yet unique nonreciprocal topological phonon transfer and blockade via dark-mode engineering. This happens by harnessing the power of synthetic magnetism, leading to an extraordinary transition between the dark-mode nonbreaking and breaking regimes, in a precise and controlled manner.

View Article and Find Full Text PDF

Propagation of extreme events in multiplex neuronal networks.

Phys Rev E

July 2025

Bharathidasan University, Department of Nonlinear Dynamics, Tiruchirappalli 620024, Tamil Nadu, India.

In previous studies, the propagation of extreme events across nodes in monolayer networks was studied extensively. In this work, we extend this investigation to explore the propagation of extreme events between two distinct layers in a multiplex network. We consider a two-layer network, where one layer is globally coupled and exhibits extreme events, while the second layer remains uncoupled.

View Article and Find Full Text PDF

A chain of harmonic oscillators with nonreciprocal coupling exhibits characteristic amplification behavior that serves as a classical analog of the non-Hermitian skin effect (NHSE). We extend this concept of nonreciprocal amplification to nonlinear dynamics by employing double-well Duffing oscillators arranged in ring-structured units. The addition of units induces bifurcations of attractors, driving transitions from limit cycles to tori, chaos, and hyperchaos.

View Article and Find Full Text PDF

Electroencephalography (EEG) microstate sequences, representing whole-brain spatial potential distribution patterns of the EEG, help capture spatiotemporally continuous and fluctuating neural dynamics with high temporal resolution through appropriate discretization. Recent studies suggest that EEG microstate transitions are gradual and continuous phenomena, contrary to the classical view of binary transitions. To update conventional microstate analysis to reflect continuous EEG dynamics and examine differences in age-related electrophysiological state transitions, we considered the relative positions of EEG microstates on the neural manifold and their topographical polarity.

View Article and Find Full Text PDF