98%
921
2 minutes
20
Both our environment and our behavior contain many spatiotemporal regularities. Preferential and differential tuning of neural populations to these regularities can be demonstrated by assessing rate dependence of neural responses evoked during continuous periodic stimulation. Here, we used functional magnetic resonance imaging to measure regional variations of temporal sensitivity along the human ventral visual stream. By alternating one face and one house stimulus, we combined sufficient low-level signal modulation with changes in semantic meaning and could therefore drive all tiers of visual cortex strongly enough to assess rate dependence. We found several dissociations between early visual cortex and middle- and higher-tier regions. First, there was a progressive slowing down of stimulation rates yielding peak responses along the ventral visual stream. This finding shows the width of temporal integration windows to increase at higher hierarchical levels. Next, for fixed rates, early but not higher visual cortex responses additionally depended on the length of stimulus exposure, which may indicate increased persistence of responses to short stimuli at higher hierarchical levels. Finally, attention, which was recruited by an incidental task, interacted with stimulation rate and shifted tuning peaks toward lower frequencies. Together, these findings quantify neural response properties that are likely to be operational during natural vision and that provide putative neurofunctional substrates of mechanisms that are relevant in several psychophysical phenomena as masking and the attentional blink. Moreover, they illustrate temporal constraints for translating the deployment of attention into enhanced neural responses and thereby account for lower limits of attentional dwell time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622391 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2467-12.2012 | DOI Listing |
Cereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFNeurol Ther
September 2025
Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China.
Central post-stroke pain (CPSP) is an intractable neuropathic pain syndrome. Dual-target deep brain stimulation (DBS), which integrates sensory thalamic modulation and endogenous analgesic pathways, has emerged as a potential intervention; however, clinical evidence remains scarce. We report a 54-year-old woman who developed right-sided limb paresthesia progressing to persistent right hemibody pain following a left thalamic hemorrhage.
View Article and Find Full Text PDFCan J Urol
August 2025
Department of Urology, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Arkes 23, Chicago, IL 60611, USA.
Penile fracture is a rare clinical entity that occurs secondary to direct trauma to an erect penis, most commonly during sexual intercourse. Specifically, increased pressure within the corpus cavernosa results in rupture of the tunica albuginea. Occasionally, these injuries extend to the urethra and very rarely cause a complete urethral avulsion.
View Article and Find Full Text PDFCortex
August 2025
Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain. Electronic address:
Global/local biases in the visual processing of structurally complex stimuli occur under certain conditions of the beholder. Previous experiments using hierarchical letters (large letters made of small ones) have reported a global precedence in young adults. Here, we aimed to define neurophysiological markers of a possible global/local bias during the implicit processing of new faces.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
fMRI unit, Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem, Israel.
Purpose: Behavioral and electrophysiological studies have shown that vision is slower under scotopic conditions (dark, activating only rods) than photopic conditions (light, activating only cones). However, slower scotopic processing cannot be solely explained by findings that rod signals are slower than cone signals, and it is unknown whether temporal processing differences persist in cortex. Flickering stimuli have previously been used in functional MRI (fMRI) studies to probe photopic cortical temporal sensitivity.
View Article and Find Full Text PDF