98%
921
2 minutes
20
The floating water bridge phenomenon is a freestanding rope-shaped connection of pure liquid water, formed under the influence of a high potential difference (approximately 15 kV). Several recent spectroscopic, optical, and neutron scattering studies have suggested that the origin of the bridge is associated with the formation of anisotropic chains of water molecules in the liquid. In this work, high energy X-ray diffraction experiments have been performed on a series of floating water bridges as a function of applied voltage, bridge length, and position within the bridge. The two-dimensional X-ray scattering data showed no direction-dependence, indicating that the bulk water molecules do not exhibit any significant preferred orientation along the electric field. The only structural changes observed were those due to heating, and these effects were found to be the same as for bulk water. These X-ray scattering measurements are supported by molecular dynamics (MD) simulations which were performed under electric fields of 10(6) V/m and 10(9) V/m. Directional structure factor calculations were made from these simulations parallel and perpendicular to the E-field. The 10(6) V/m model showed no significant directional-dependence (anisotropy) in the structure factors. The 10(9) V/m model however, contained molecules aligned by the E-field, and had significant structural anisotropy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478597 | PMC |
http://dx.doi.org/10.1073/pnas.1210732109 | DOI Listing |
Mar Pollut Bull
September 2025
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan. Electronic address:
Existing studies have identified a substantial amount of invisible floating debris in low-visibility marine environments, in addition to debris on the surface and seabed. These suspended pollutants represent a persistent and dynamic threat to marine ecosystems and maritime safety. Although sonar technology facilitates debris monitoring in low-visibility waters, the automatic extraction of small and weakly contrasted debris targets remains a critical challenge.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China. Electronic address:
Inland water ecosystems play key roles in the production, transportation, transformation, storage, and consumption of global greenhouse gases (GHG). Different water body types exhibit spatial and temporal differences after considering factors such as season and aquatic plant life forms. The results revealed that the annual global warming potential (GWP) (Tg CO-eq yr) from swamps, rivers, lakes, and reservoirs in China were 1382.
View Article and Find Full Text PDFZoological Lett
September 2025
Department of Marine Biology, School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan.
Background: The transparent jellyfish body is often difficult to see underwater, as its refractive index is similar to that of seawater, resulting in a low light reflectance on the body surface. Nevertheless, the outlines of jellyfish can be recognized by the slight reflection of light from their body surfaces. In some jellyfish species, the epidermis covering the body surface has an array of microvilli, nanostructures that can potentially reduce light reflection.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
Gastroretentive drug delivery systems (GRDDS) are attractive oral extended-release dosage forms that prolong drug release and absorption in the gastrointestinal tract through engineered mechanisms to extend the residence time of orally administered dosage forms in the stomach. One of the gastroretentive designs is to render the dosage forms floatable in the gastric fluid upon oral administration. The present study aimed to develop albumin cryogels with extended buoyancy and remarkable resistance to gastric proteolysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute for Technical Thermodynamics, Technical University of Darmstadt, Darmstadt 64287, Germany.
Known droplet jumping phenomena include coalescence-induced jumping, single-droplet jumping of partially constrained droplets due to a mismatch in Laplace pressure, and evaporation-induced trampolining. In this study, we introduce a novel droplet jumping phenomenon, in which multiple microdroplets jump nearly simultaneously from superhydrophobic colloidal rafts. This phenomenon is triggered by a coalescence of a microdroplet with the underlying water, which generates a radially propagating capillary wave.
View Article and Find Full Text PDF