98%
921
2 minutes
20
A bottom-up approach to produce a long-range ordered superlattice of monodisperse and isomorphic metal-oxide nanoparticles (NP) supported onto an oxide substrate is demonstrated. The synthetic strategy consists of self-assembling metallic NP on an ultrathin nanopatterned aluminum oxide template followed by a morphology-conserving oxidation process, and is exemplified in the case of Ni, but is generally applicable to a wide range of metallic systems. Both fully oxidized and core-shell metal-metal-oxide particles are synthesized, up to 3-4 nm in diameter, and characterized via spectroscopic and theoretical tools. This opens up a new avenue for probing unit and ensemble effects on the properties of oxide materials in the nanoscale regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.195507 | DOI Listing |
MAGMA
September 2025
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.
Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.
MAGMA
September 2025
Department of Medical Imaging, (766), Radboud University Medical Center, Geert Grooteplein 10Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.
Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.
Nature
September 2025
TUM School of Natural Sciences, Physics Department, Technical University of Munich, Garching, Germany.
Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter-they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems, which are generically difficult to simulate classically because of their high entanglement. Here we realize a Floquet topologically ordered state theoretically proposed in ref.
View Article and Find Full Text PDFHeart Rhythm
September 2025
Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States. Electronic address:
Background: Electronic nicotine delivery systems (ENDS) utilize "E-liquids" in order to generate "E-vapor", an inhalable aerosolized mixture containing nicotine and flavors. Flavored ENDS are very popular among teens who vape, however, the possible cardiac electrophysiological harm of inhalation exposure to flavored ENDS are not fully understood.
Objective: To test if inhalation exposure to flavoring carbonyls in e-liquids compromises mitochondrial integrity, increases oxidative stress, and leads to cardiac electrophysiological toxicity.
Int J Antimicrob Agents
September 2025
Dalle Molle Institute for Artificial Intelligence IDSIA. USI/SUPSI, Via la Santa 1, CH-6962 Lugano-Viganello, Switzerland. Electronic address:
Cell-penetrating peptides (CPPs) are powerful vectors for the intracellular delivery of a diverse array of therapeutic molecules. Despite their potential, the rational design of CPPs remains a challenging task that often requires extensive experimental efforts and iterations. In this study, we introduce an innovative approach for the de novo design of CPPs, leveraging the strengths of machine learning (ML) and optimization algorithms.
View Article and Find Full Text PDF