Comparison of toxicity and transcriptomic profiles in a diatom exposed to oil, dispersants, dispersed oil.

Aquat Toxicol

CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

Published: November 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dispersants are commonly used to mitigate the impact of oil spills, however, the ecological cost associated with their use is uncertain. The toxicity of weathered oil, dispersed weathered oil, and the hydrocarbon-based dispersant Slickgone NS(®), to the diatom Phaeodactylum tricornutum has been examined using standardized toxicity tests. The assumption that most toxicity occurs via narcosis was tested by measuring membrane damage in diatoms after exposure to one of the petroleum products. The mode of toxic action was determined using microarray-based gene expression profiling in diatoms after exposure to one of the petroleum products. The diatoms were found to be much more sensitive to dispersants than to the water accommodated fraction (WAF), and more sensitive to the chemically enhanced WAF (CEWAF) than to either the WAF itself or the dispersants. Exposure to dispersants and CEWAF caused membrane damage, while exposure to WAF did not. The gene expression profiles resulting from exposure to all three petroleum mixtures were highly similar, suggesting a similar mode of action for these compounds. The observed toxicity bore no relationship to PAH concentrations in the water column or to total petroleum hydrocarbon (TPH), suggesting that an undescribed component of the oil was causing toxicity. Taken together, these results suggest that the use of dispersants to clean up oil spills will dramatically increase the oil toxicity to diatoms, and may have implications for ecological processes such as the timing of blooms necessary for recruitment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2012.08.005DOI Listing

Publication Analysis

Top Keywords

oil
8
oil dispersants
8
oil spills
8
weathered oil
8
membrane damage
8
diatoms exposure
8
exposure petroleum
8
petroleum products
8
gene expression
8
dispersants
6

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Ball Milling Approaches for Biomass-Derived Nanocarbon in Advanced Sustainable Applications.

Chem Rec

September 2025

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.

The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.

View Article and Find Full Text PDF

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

Introduction: Sulforaphane (SFN) is recognized for its anti-inflammatory properties; however, the underlying molecular mechanisms remain unclear. In this study, we explored the effect of SFN on subarachnoid hemorrhage (SAH) and the potential mechanisms.

Methods: Sprague-Dawley (SD) rats were divided into three groups (n = 12): Sham + vehicle group (Sham + V), SAH + vehicle group (SAH + V), and SAH + SFN group (SAH + S).

View Article and Find Full Text PDF