Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we present a new approach that is capable of fabricating nanochannels in a poly(methyl methacrylate) (PMMA) substrate. This method, which we call microchannel refill (MR), utilizes the refilling of glassy thermoplastics under thermal compression to reduce a microscopic channel to a nanochannel. It only has two main steps. First, a microchannel is fabricated in a PMMA substrate using normal hot embossing. Second, the microchannel is compressed under a certain temperature and pressure to obtain a nanochannel. We show that a nanochannel with a width as small as 132 nm (with a depth of 85 nm) can be easily produced by choosing the appropriate compression temperature, compression pressure, original microchannel width and original microchannel aspect ratio. Compared with most current nanochannel fabrication methods, MR is a quick, simple and cost-effective way to produce nanochannels in polymer substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2lc40078bDOI Listing

Publication Analysis

Top Keywords

microchannel refill
8
fabricating nanochannels
8
nanochannels polymer
8
polymer substrates
8
pmma substrate
8
original microchannel
8
microchannel
6
refill method
4
method fabricating
4
substrates paper
4

Similar Publications

Controlling the removal of bubbles from channels is crucial in microfluidics, either to eliminate air pockets if they are unwanted, or in pumpless microfluidic applications where receding bubbles is a way to induce liquid flows. To provide a better physical understanding of air removal in microchannels, we study the dynamics of invasion of wetting liquids in dead-end microchannels surrounded by an air-permeable medium. Using polydimethylsiloxane (PDMS)-based devices, we demonstrate that gas permeation through the channel walls drives an exponential decay in trapped air length with time (in marked contrast with the so-called Lucas-Washburn law of imbibition in porous media), providing a straightforward route to bubble elimination.

View Article and Find Full Text PDF

Experiments with gradients of soluble bioactive species have significantly advanced with microfluidic developments that enable cell observation and stringent control of environmental conditions. While some methodologies rely on flow to establish gradients, others opt for flow-free conditions, which is particularly beneficial for studying non-adherent and/or shear-sensitive cells. In flow-free devices, bioactive species diffuse either through resistive microchannels in microchannel-based devices, through a porous membrane in membrane-based devices, or through a hydrogel in gel-based devices.

View Article and Find Full Text PDF

Porous structures, such as perforation plates and pit membranes, have attracted considerable attention due to their hydraulic regulation of water flow through vascular plant networks. However, limited information is available regarding the hydraulic functions of such structures during water-refilling and embolism repair because of difficulties in simultaneous measurements of refilling flow and pressure variations in xylem vessels. In this study, we developed a xylem-inspired microchannel with a porous mesh for systematic investigation on the hydraulic contribution of perforation plates on water-refilling.

View Article and Find Full Text PDF

An implantable drug delivery device with an inflatable/deflatable reservoir, a release rate controlling micro-channel, a syringe attachable inlet, a unidirectional channel preventing drug substances from flowing back into the inlet, and a magnetic polydimethylsiloxane (PDMS) outlet capable of on-demand drug release was designed and fabricated to realize effective drug therapy. The reservoir is refillable through the inlet. Therefore, the device is reusable.

View Article and Find Full Text PDF

Structured metallic patterns are routinely used for a wide variety of applications, ranging from electronic circuits to plasmonics and metamaterials. Numerous techniques have been developed for the fabrication of these devices, in which the metal patterns are typically formed using conventional metals. While this approach has proven very successful, it does generally limit the ability to reconfigure the geometry of the overall device.

View Article and Find Full Text PDF