98%
921
2 minutes
20
Mechanical stimuli play important roles in regulating chondrogenic differentiation, but seldom studies have focused on when and how mechanical stimuli should be initiated. We have previously shown that Col2α1 mRNA was increased by delayed dynamic compressive stress initiated at the 8th day of chondrogenic culture. The current work is to further study the possibility of using delayed mechanical stress to relay chondrogenesis initiated by exogenous TGF-β1. Mechanical stimulation was delivered from day 8 to day 14 of chondrogenic culture. It showed that delayed compressive stress not only stimulated gene expression and protein synthesis of chondrocyte-specific markers, but also stimulated the endogenous TGF-β1 gene transcription, protein expression and the subsequent activation even when exogenous TGF-β1 was discontinued. Furthermore, mechanical stress also promoted protein phosphorylation and nuclear translocation of Smad2/3, the TGF-β1 downstream effectors. Inhibition TGF-β with SB431542 significantly affected the stress-induced chondrogenic gene expression. In addition, phosphorylated-p38 and RhoB were upregulated by delayed loading in a TGF-β-related manner. Phosphorylated-ERK1/2 and Wnt7a were also increased, but in a TGF-β-independent way. It indicates that delayed compressive stress can be used as an effective substitute for TGF-β1 supplement in inducing chondrogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2012.08.019 | DOI Listing |
PLoS One
September 2025
Datong Hongtai Mine Engineering Construction Co., Ltd. of Jinneng Holding Coal Industry Group, Datong, China.
To reveal the microscopic damage evolution law of rocks under the effect of unloading disturbances with different amplitudes, electron microscope scanning, nuclear magnetic resonance (NMR), and triaxial compression tests were carried out. The evolution patterns of surface and internal pore types and mechanical properties of rock specimens after unloading perturbation were analyzed. In this paper, a classification of the ratio of dmax/dmin (dmax and dmin refer to the maximum and minimum pore size of each pore, respectively) is proposed to examine the pore and crack evolution extension development on the surface of the specimen.
View Article and Find Full Text PDFPLoS One
September 2025
Guangxi Transportation Investment Group Co., Ltd., Nanning, Guangxi, China.
To investigate the axial compressive behavior of CFRP-PVC square tube-embedded aluminum concrete columns, five specimens and one control specimen without I-shaped aluminum were tested under uniaxial compression, with the number of CFRP layers and spacing as variable parameters. The failure modes, load-displacement responses, and mechanical properties such as peak load, ductility, stiffness, and energy dissipation were systematically analyzed. Results showed that the incorporation of I-shaped aluminum improved the peak load and ductility by an average of 48.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
Objective: Due to its inherent high instability, the selection of fixation strategies for unilateral Denis type II sacral fractures remains a controversial challenge in the field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral fractures. By applying three different fixation methods, it aims to explore their biomechanical properties and provide a theoretical basis for optimizing clinical fixation protocols.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.
View Article and Find Full Text PDF