98%
921
2 minutes
20
To explore the gene-based principal component logistic regression model and its application in genome-wide association study. Using the simulated genome-wide single nucleotide polymorphism (SNPs) genotypes data, we proposed a practical statistical analysis strategy-'the principal component logistic regression model', based on the gene levels to assess the association between genetic variations and complex diseases. The simulation results showed that the P value of genes in related diseases was the smallest among the results from all the genes. The results of simulation indicated that not only it could reduce the degree of freedom through hypothesis testing but could also better understand the correlations between SNPs. The gene-based principal component logistic regression model seemed to have certain statistical power for testing the association between genetic genes and diseases in the genome-wide association studies.
Download full-text PDF |
Source |
---|
J Trace Elem Med Biol
September 2025
Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:
Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.
Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFPLoS One
September 2025
School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.
Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.
View Article and Find Full Text PDFPLoS One
September 2025
State Key Laboratory of Precision Blasting Engineering, Jianghan University, Wuhan, Hubei, PR China.
Numerous parameters influence the slotting performance of slotted cartridge, to facilitate rapid, efficient, and accurate predictions of the slitting performance, statistical analysis of PMMA blasting experiments with six different slitted cartridge parameters yielded 12 evaluation indicators. Subsequently, a principal component analysis (PCA) method was introduced to reduce the dimensionality of the data associated with these indicators, and three new comprehensive indicators were extracted for a comprehensive assessment of the slotting performance. The PCA scores ranked the influence of the six slotted cartridge parameters on slotting performance as follows: decoupling coefficient, slotting width, slotting angle, slotting tube thickness, slotting tube material, and charge amount.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, Osun State University, Osogbo, Nigeria.
Probabilistic Random Forest is an extension of the traditional Random Forest machine learning algorithm that is one of the frequently used machine learning algorithms employed for species distribution modeling. However, with the use of complex dataset for predicting the presence or absence of the species, It is essential that feature extraction is important to generate optimal prediction that can affect the model accuracy and AUC score of the model simulation. In this paper, we integrated the Genetic Algorithm Optimization technique, which is popular for its excellent feature extraction technique, to enhance the predictive performance of the PRF Model.
View Article and Find Full Text PDF