Evolutionary stability of ideal free nonlocal dispersal.

J Biol Dyn

Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA.

Published: December 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We study the evolutionary stability of nonlocal dispersal strategies that can produce ideal free population distributions, that is, distributions where all individuals have equal fitness and there is no net movement of individuals at equilibrium. We find that the property of producing ideal free distributions is necessary and often sufficient for evolutionary stability. Our results extend those already developed for discrete diffusion models on finite patch networks to the case of nonlocal dispersal models based on integrodifferential equations. The analysis is based on the use of comparison methods and the construction of sub- and supersolutions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17513758.2011.588341DOI Listing

Publication Analysis

Top Keywords

evolutionary stability
12
ideal free
12
nonlocal dispersal
12
stability ideal
4
free nonlocal
4
dispersal study
4
study evolutionary
4
stability nonlocal
4
dispersal strategies
4
strategies produce
4

Similar Publications

Evaluating the contribution of individual variation in parasite-mediated anorexia to trophic cascades.

Ecology

September 2025

Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.

Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.

View Article and Find Full Text PDF

The UPF0235 UniProt family proteins are conserved across archaea, bacteria, and eukaryotes; however, they remain functionally uncharacterized. Here, we report the high resolution (1.3 Å) crystal structure of UPF0235 protein (PF1765, UniProt: Q8U052) from Pyrococcus furiosus.

View Article and Find Full Text PDF

The Fabaceae-specific review highlights the structural, functional, and phylogenetic diversity of UGTs, revealing clade-specific glycosylation mechanisms and novel sugar conjugations that contribute to legume adaptability. These insights offer promising avenues for metabolic engineering and stress-resilient crop development. UDP-glycosyltransferases (UGTs) are the biocatalysts modifying small molecules through glycosylation to enhance their solubility, stability, and bioactivity.

View Article and Find Full Text PDF

This study aims to improve the market efficiency of intellectual property pledge financing, based on the perspective of willingness to perform of technology-based SMEs, this paper defined the end-of-period value conversion coefficient of pledged property (EVCC) to measure the comparative relationship between the end-of-period value of the pledged intellectual property and the sum of principal and interest of the loan and introduced it into the game payment matrix; using evolutionary game theory, based on the assumption of bounded rationality, an evolutionary game model of intellectual property pledge financing between technology-based SMEs and banks based on the EVCC was constructed, and a numerical simulation was then conducted. The results of asymptotic stability analysis showed that when a certain condition is met, the strategy combination (performance, loan) is the evolutionary stability strategy (ESS). The numerical simulation showed that the EVCC has a positive impact on the speed of technology-based SMEs choosing the performance strategy, and there is a positive threshold effect (The threshold is 0.

View Article and Find Full Text PDF

Residues 27T and 297A in VP2 contribute to the enhanced replication and pathogenicity of raccoon dog parvovirus.

J Virol

September 2025

Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Institute of Special Animal and Plant Sciences, Changchun, China.

Raccoon dog parvovirus (RDPV) is a highly contagious pathogen causing severe hemorrhagic enteritis that is fatal in young raccoon dogs. Since 2016, epidemiological investigations have documented recurrent outbreaks of RDPV, exhibiting heightened virulence; however, the molecular mechanisms driving this increased pathogenicity remain poorly understood. In this study, an alignment of 67 complete RDPV sequences identified two high-frequency amino acid mutations at positions 27 and 297 in the VP2 capsid protein that distinguish RDPV strains from before and after the 2016 outbreak.

View Article and Find Full Text PDF