Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468192PMC
http://dx.doi.org/10.3791/3586DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer cells
12
cell death
12
apoptotic autophagic
8
autophagic induction
8
human breast
8
cells
8
neuroblastoma cells
8
induction apoptosis
8
jcth-4 combination
8

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder caused by tumor-mediated antibodies targeting the cerebellum, often leading to irreversible cerebellar damage. The most common antibody implicated in PCD is anti-Purkinje cell cytoplasmic antibody type-1, associated with malignancies such as breast, gynecological, and lung cancers. Symptoms often include dizziness, imbalance, progressive ataxia, and other cerebellar signs/symptoms, but early presentations may mimic acute vestibular syndrome, thus complicating diagnosis.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF