98%
921
2 minutes
20
The process of tissue regeneration consists of a set of complex phenomena such as hydrodynamics, nutrient transfer, cell growth, and matrix deposition. Traditional cell culture and bioreactor design procedure follow trial-and-error analyses to understand the effects of varying physical, chemical, and mechanical parameters that govern the process of tissue regeneration. This trend has been changing as computational fluid dynamics (CFD) analysis can now be used to understand the effects of flow, cell proliferation, and consumption kinetics on the dynamics involved with in vitro tissue regeneration. Furthermore, CFD analyses enable understanding the influence of nutrient transport on cell growth and the effect of cell proliferation as the tissue regenerates. This is especially advantageous in improving and optimizing the design of bioreactors and tissue culture. Influence of parameters such as velocity, oxygen tension, stress, and strain on tissue growth can be effectively studied throughout the bioreactor using CFD as it becomes impractical and cumbersome to install probes at several locations in the bioreactor. Hence, CFD offers several advantages for the advancement of tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2012.03.010 | DOI Listing |
Signal Transduct Target Ther
September 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.
Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou, PR China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi 563000, Guizhou, PR China; The Collaborative Innovation Center of Tis
Lactylation is a novel post-translational modification (PTM) mediated by lactate, which dynamically regulates protein functions and gene expression by covalently attaching lactate groups to lysine residues. Recent studies have shown that abnormal lactate metabolism not only contributes to the pathogenesis of epilepsy through microenvironment acidification but also influences neuroinflammation, energy metabolism imbalance, neurotransmitter dysregulation, synaptic plasticity, and epigenetic regulation via lactylation. This positions lactylation as a critical metabolic-epigenetic intersection in the pathological mechanisms of epilepsy.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China; Shanghai Key Laboratory of Intelligen
Osteochondral defects caused by trauma, obesity, tumors, and degenerative osteoarthropathies severely impair patients' quality of life. Multilayer tissue engineering scaffolds offer promising strategies for osteochondral repair by enhancing structural biomimicry. In this study, a triple-layer GelMA-alginate-based osteochondral scaffold (TCOS) was fabricated using an enhanced multi-axis, multi-process, multi-material 3D bioprinting system (MAPM-BPS).
View Article and Find Full Text PDFJ Adv Res
September 2025
(1)School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China. Electronic address:
Introduction: Traditional hydrogels with poor mechanical properties and lack of biological activities severely limit their application in wound therapy. Designing multifunctional hydrogels for monitoring and accelerating wound healing remains imperative.
Objectives: The aim of this study is to develop a multifunctional antifreeze ionic conductive Gel-TBA@organohydrogel with antibacterial, anti-inflammatory and antioxidant properties for monitoring and wound treatment.
Int J Pharm
September 2025
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran polytechnic), Iran. Electronic address:
Hydrogen sulfide (HS) has been recognized as one of the three main gasotransmitters found extensively in tissues, regulating functions crucial for survival. In many pathological cases, its concentration drops from the intrinsic level, impairing healing and leading to unmet regeneration outcomes. A hybrid microparticle/hydrogel system was developed to sustainably release HS and regulate its level in deprived tissues.
View Article and Find Full Text PDF