98%
921
2 minutes
20
Unlabelled: Epithelial ovarian cancer is the leading cause of death from gynecologic malignancy, and its molecular basis is poorly understood. We previously demonstrated that opioid binding protein cell adhesion molecule (OPCML) was frequently epigenetically inactivated in epithelial ovarian cancers, with tumor suppressor function in vitro and in vivo. Here, we further show the clinical relevance of OPCML and demonstrate that OPCML functions by a novel mechanism in epithelial ovarian cancer cell lines and normal ovarian surface epithelial cells by regulating a specific repertoire of receptor tyrosine kinases: EPHA2, FGFR1, FGFR3, HER2, and HER4. OPCML negatively regulates receptor tyrosine kinases by binding their extracellular domains, altering trafficking via nonclathrin-dependent endocytosis, and promoting their degradation via a polyubiquitination-associated proteasomal mechanism leading to signaling and growth inhibition. Exogenous recombinant OPCML domain 1-3 protein inhibited the cell growth of epithelial ovarian cancers cell in vitro and in vivo in 2 murine ovarian cancer intraperitoneal models that used an identical mechanism. These findings demonstrate a novel mechanism of OPCML-mediated tumor suppression and provide a proof-of-concept for recombinant OPCML protein therapy in epithelial ovarian cancers.
Significance: The OPCML tumor suppressor negatively regulates a specific spectrum of receptor tyrosine kinases in ovarian cancer cells by binding to their extracellular domain and altering trafficking to a nonclathrin, caveolin-1–associated endosomal pathway that results in receptor tyrosine kinase polyubiquitination and proteasomal degradation. Recombinant OPCML domain 1-3 recapitulates this mechanism and may allow for the implementation of an extracellular tumor-suppressor replacement strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378039 | PMC |
http://dx.doi.org/10.1158/2159-8290.CD-11-0256 | DOI Listing |
Cell Rep Med
September 2025
Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:
Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:
Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.
View Article and Find Full Text PDFMenopause
September 2025
Department of Gynecologic Oncology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY.
Objective: Endometrial cancer (EC) and epithelial ovarian cancer (EOC) affect women of all ages, and the incidence of endometrial cancer in premenopausal women is rising. Menopause can be detrimental to longevity and quality of life, but evidence suggests estrogen therapy (ET) is safe in these patients. The purpose of this study was to evaluate the practice patterns of gynecologists and gynecologic oncologists (GYO) in the United States in regards to prescription of ET to gynecologic cancer patients.
View Article and Find Full Text PDFCancer Rep (Hoboken)
September 2025
ENT and Head and Neck Research Center and Department, the Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective: To present a case of metastatic endometrial carcinosarcoma (ECS) with a long-term complete response to chemotherapy using a paclitaxel and carboplatin regimen.
Case Report: A 47-year-old premenopausal woman was diagnosed with a large, advanced intrauterine tumor. She underwent a total abdominal hysterectomy with bilateral salpingo-oophorectomy.
J Vis Exp
August 2025
Department of Obstetrics and Gynecology, Affiliated Hospital of Putian University;
Long non-coding RNA MALAT1 regulates epithelial-mesenchymal transition (EMT) and metastasis in epithelial ovarian cancer (EOC) through a competing endogenous RNA (ceRNA) mechanism involving miRNA modulation. This study aimed to elucidate the molecular pathway by which MALAT1 influences EMT and metastatic behavior via interaction with miR-200c-3p and SNAI2. MALAT1 expression was genetically manipulated in the EOC cell line SK-OV-3 by either overexpression or knockdown.
View Article and Find Full Text PDF