Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time.

Result: In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated.

Conclusion: By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean absolute errors of 9.34%, 5.75%, 8.78%, and correlation coefficients 0.88, 0.96, and 0.95 respectively. The temporal matching of leaves was accurate in 95% of the cases and the average execution time required to analyse a plant over four time-points was 4.9 minutes. The mesh processing based methodology is thus considered suitable for quantitative 4D monitoring of plant phenotypic features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464618PMC
http://dx.doi.org/10.1186/1471-2229-12-63DOI Listing

Publication Analysis

Top Keywords

mesh processing
12
plant
10
novel mesh
8
processing based
8
based technique
8
high-throughput plant
8
plant phenomics
8
raw data
8
mesh based
8
gossypium hirsutum
8

Similar Publications

Accurate prediction of time-varying dynamic parameters during the milling process is a prerequisite for chatter-free cutting of thin-walled parts. In this paper, a matrix iterative prediction method based on weighted parameters is proposed for the time-varying structural modes during the milling of thin-walled blade structures. The thin-walled blade finite element model is established based on the 4-node plate element, and the time-varying dynamic parameters of the workpiece during the cutting process can be obtained by modifying the thickness of the nodes through the constructed mesh element finite element model It is not necessary to re-divide the mesh elements of the thin-walled parts at each cutting position, thus improving the calculation efficiency of the dynamic parameters of the workpiece.

View Article and Find Full Text PDF

A De Garengeot hernia describes the rare occurrence of an appendix located within a femoral hernia sac. An incidence of appendiceal inflammation associated with a De Garengeot hernia is an even rarer surgical finding. A woman in her 70s presented to a district general hospital with a two-week history of a mildly tender right-sided groin lump.

View Article and Find Full Text PDF

In adult mammals and other highly developed animals, incomplete wound healing, scar formation, and fibrosis occur. No treatment for complete tissue regeneration is currently available. However, in mice, at up to 13 days of gestation, early embryonic wounds regenerate without visible scarring.

View Article and Find Full Text PDF

Electrospun porous nanofibers for sustained drug delivery: Degradation-controlled release through architectural design.

Colloids Surf B Biointerfaces

September 2025

College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China. Electronic address:

Diclofenac sodium (DS), a non-steroidal anti-inflammatory drug used for treating inflammatory pain, has a short elimination half-life, which can lead to fluctuations in blood drug concentration. Therefore, developing sustained-release formulations is necessary to meet clinical needs. Biodegradable polymers exhibit excellent sustained-release properties and good biocompatibility, making them suitable for processing into nanofiber-based drug delivery systems via electrospinning technology.

View Article and Find Full Text PDF

Perspective: Food Environment, Climate Change, Inflammation, Diet, and Health.

Adv Nutr

September 2025

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, 715 Sumter Street, CLS 513C, SC 29208, USA.

Human activities contribute to large shifts in the global climate, with far-reaching impacts on ecosystems, societies, and human health. Modern food systems-designed to produce convenience foods that tend to have high inflammatory potential-exacerbate environmental degradation and shape the interwoven challenges of climate, nutrition, and health. Over the past three decades, extreme weather has worsened and poor diets have led to more inflammation-related health problems-two parallel trends that are exposing system-wide weaknesses and harming global health.

View Article and Find Full Text PDF