Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transcutaneous immunization (TCI) is an attractive alternative vaccination route compared to the commonly used injection systems. We previously developed a dissolving microneedle array for use as a TCI device, and reported that TCI with the dissolving microneedle array induced an immune response against model antigens. In the present study, we investigated the vaccination efficacy against tetanus and diphtheria, malaria, and influenza using this vaccination system. Our TCI system induced substantial increases in toxoid-specific IgG levels and toxin-neutralizing antibody titer and induced the production of anti-SE36 IgG, which could bind to malaria parasite. On influenza HA vaccination, robust antibody production was elicited in mice that provided complete protection against a subsequent influenza virus challenge. These findings demonstrate that TCI using a dissolving microneedle array can elicit large immune responses against infectious diseases. Based on these results, we are now preparing translational research for human clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2012.04.001DOI Listing

Publication Analysis

Top Keywords

dissolving microneedle
16
microneedle array
16
transcutaneous immunization
8
tetanus diphtheria
8
diphtheria malaria
8
malaria influenza
8
tci dissolving
8
influenza vaccination
8
tci
5
dissolving
4

Similar Publications

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

Current status of Liraglutide delivery systems for the management of type 2 diabetes mellitus.

Drug Deliv Transl Res

September 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.

Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.

View Article and Find Full Text PDF

Development and Evaluation of Dual Microneedle Array Patch for Sequential Intradermal Delivery of Adjuvant and Antigen.

Pharm Res

September 2025

Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.

Purpose: Adjuvants are critical for enhancing immune responses to recombinant protein-based vaccines, which typically exhibit weak immunogenicity. Microneedle array patches (MAPs) offer a promising method for intradermal delivery, but conventional Co-Delivery MAPs (containing antigen and adjuvant together) have limited loading capacity and potential undesirable interactions. Adjuvants may also trigger adverse reactions in sensitive populations.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by , remains a global health emergency, particularly in low- and middle-income countries. Despite effective pharmacotherapy, prolonged treatment, poor adherence, and drug resistance continue to hinder eradication. Isoniazid (ISZ), a first-line antitubercular drug, is effective but limited by high aqueous solubility and short half-life, necessitating daily administration and causing plasma fluctuations.

View Article and Find Full Text PDF

Microneedle-Delivered Multivalent MPXV DNA Vaccines Induce Promising Immunity Profiles and Cross-Protection in Mice.

Immunology

September 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.

Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery.

View Article and Find Full Text PDF