Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lactobacillus casei extract (LBX) has been reported to prevent gastric cancer, but the underlying mechanism remains unclear. The proliferation and cell death of gastric cancer KATO3 cells were examined after treatment with LBX for various times and at various doses. LBX inhibited the growth of gastric cancer cells and induced apoptosis by inactivating NF-κB promoter activity. Apoptosis induced by LBX, however, is not directly associated with the intrinsic mitochondrial pathway. Immunoblot analysis revealed that LBX decreased the expressions of NF-κB and IκB. The reduced NF-κB levels led to the decreased phosphorylation of mTOR signaling components, such as PI3K, Akt, and (p70)S6 kinase. These results showed for the first time that LBX induced apoptosis in gastric cancer cells by inhibiting NF-κB and mTOR-mediated signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1534735412442380DOI Listing

Publication Analysis

Top Keywords

gastric cancer
20
lactobacillus casei
8
casei extract
8
apoptosis gastric
8
inhibiting nf-κb
8
nf-κb mtor-mediated
8
mtor-mediated signaling
8
cancer cells
8
induced apoptosis
8
lbx
6

Similar Publications

Background: Immune checkpoint inhibitors (ICIs) play a pivotal role in the treatment of advanced gastric cancer (GC). However, the biomarkers used to predict ICI efficacy are limited due to their reliance on single or static tumor characteristics. This study aims to develop a machine learning (ML) model that incorporates dynamic changes in clinlabomics data to optimize the predictive accuracy of ICI efficacy.

View Article and Find Full Text PDF

Background: Esophagectomy causes anatomical changes that can lead to rapid food transit and reactive hypoglycemia (RH). Patients are advised on eating patterns postesophagectomy to prevent RH, but its true incidence and the impact of dietary recommendations remain under-researched.

Materials And Methods: Individuals >12 months postesophagectomy were recruited from the National Centre for Oesophageal and Gastric Cancer at St James's Hospital in Dublin, Ireland.

View Article and Find Full Text PDF

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF