Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulin-like growth factor 1 (IGF1) mediates the growth-promoting activities of growth hormone. How Igf1 expression is regulated posttranscriptionally is unclear. Caenorhabditis elegans muscle excess 3 (MEX-3) is involved in cell fate specification during early embryonic development through regulating mRNAs involved in specifying cell fate. The function of its mammalian homologue, MEX3C, is unknown. Here we show that MEX3C deficiency in Mex3c homozygous mutant mice causes postnatal growth retardation and background-dependent perinatal lethality. Hypertrophy of chondrocytes in growth plates is significantly impaired. Circulating and bone local production of IGF1 are both decreased in mutant mice. Mex3c mRNA is strongly expressed in the testis and the brain, and highly expressed in resting and proliferating chondrocytes of the growth plates. MEX3C is able to enrich multiple mRNA species from tissue lysates, including Igf1. Igf1 expression in bone is decreased at the protein level but not at the mRNA level, indicating translational/posttranslational regulation. We propose that MEX3C protein plays an important role in enhancing the translation of Igf1 mRNA, which explains the perinatal lethality and growth retardation observed in MEX3C-deficient mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327323PMC
http://dx.doi.org/10.1091/mbc.E11-11-0960DOI Listing

Publication Analysis

Top Keywords

igf1 expression
12
growth
8
insulin-like growth
8
growth factor
8
factor igf1
8
postnatal growth
8
involved cell
8
cell fate
8
mutant mice
8
growth retardation
8

Similar Publications

This study assessed the optimum dietary vitamin B requirement of Pacific white shrimp, Penaeus vannamei, for growth, feed efficiency, hemocyte counts, innate immunity, and ammonia stress resistance. Semi-purified experimental diets were prepared by adding vitamin B at 0.0, 0.

View Article and Find Full Text PDF

Objective: Interleukin-17-producing CD4 Th17 cells contribute to the pathogenesis of autoimmune diseases, including crescentic glomerulonephritis. Although ADAM9 has been reported to contribute to organ inflammation, the mechanism remains poorly understood. The goal of the current study was to investigate how ADAM9 alters T cell metabolism to promote the generation of Th17 cell differentiation.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: White matter injury (WMI) following ischemic stroke represents a critical pathological determinant of persistent neurological impairment, with current therapeutic options remaining limited. Buyang Huanwu Decoction (BYHWD), a time-honored formulation historically deployed in traditional Chinese medicine to address post-stroke sequelae, exhibits documented neuroprotective efficacy; nevertheless, its mechanistic actions governing post-ischemic white matter restoration and remyelination are yet to be fully deciphered.

Aim Of The Study: This study aimed to elucidate whether BYHWD facilitates post-ischemic white matter restoration via TREM2-dependent mechanisms.

View Article and Find Full Text PDF

Placental Igf1 overexpression sex-specifically impacts mouse placenta structure, altering offspring striatal development and behavior.

Exp Neurol

September 2025

Interdisciplinary Graduate Program in Genetics, University of Iowa, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, IA, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, IA, USA; Hawk-Intellectual and Developmental Disabilities Resea

Insulin-like growth factor 1 (IGF1) is primarily produced in the placenta and is essential for neurodevelopment. Specifically, how placental IGF1 production persistently influences the brain is unclear, but with rates of complicated pregnancies on the rise, understanding placental contributions to child outcomes is paramount. We hypothesize that placental Igf1 expression alters fetal neurodevelopment relevant to neurodevelopmental disorders.

View Article and Find Full Text PDF

Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including , , and . Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring.

View Article and Find Full Text PDF