98%
921
2 minutes
20
Objective: To evaluate the effect of fibrin concentrations on mesenchymal stem cell (MSC) migration out of autologous and commercial fibrin hydrogels.
Sample: Blood and bone marrow from six 2- to 4-year-old horses.
Procedures: Autologous fibrinogen was precipitated from plasma and solubilized into a concentrated solution. Mesenchymal stem cells were resuspended in fibrinogen solutions containing 100%, 75%, 50%, and 25% of the fibrinogen precipitate solution. Fibrin hydrogels were created by mixing the fibrinogen solutions with MSCs and thrombin on tissue culture plates. After incubation for 24 hours in cell culture medium, the MSCs that had migrated onto the tissue culture surface and beyond the boundary of the hydrogels were counted. This procedure was repeated with a commercial fibrin sealant.
Results: Hydrogel-to-surface MSC migration was detected for all fibrin hydrogels. Migration from the 25% autologous hydrogels was 7.3-, 5.2-, and 4.6-fold higher than migration from 100%, 75%, and 50% autologous hydrogels, respectively. The number of migrating cells from 100%, 75%, and 50% autologous hydrogels did not differ significantly. With commercial fibrin sealant, the highest magnitude of migration was from the 25% hydrogels, and it was 26-fold higher than migration from 100% hydrogels. The 75% and 50% hydrogels resulted in migration that was 9.5- and 4.2-fold higher than migration from the 100% hydrogels, respectively.
Conclusions And Clinical Relevance: MSC migration from fibrin hydrogels increased with dilution of the fibrinogen component for both autologous and commercial sources. These data supported the feasibility of using diluted fibrin hydrogels for rapid delivery of MSCs to the surface of damaged tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.73.2.313 | DOI Listing |
Sci Adv
September 2025
Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA.
Subretinal injection of adeno-associated virus (AAV) is generally more efficacious and less inflammatory than intravitreal injection for retinal gene therapy. However, adverse events (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-5667, United States.
Phase-shift droplets undergoing acoustic droplet vaporization (ADV) offer a promising approach for ultrasound-mediated drug delivery, enabling the spatiotemporally controlled release of therapeutic payloads. A comprehensive understanding of their behavior, through both optical and acoustic methods, is essential for optimizing the therapeutic efficacy. In this study, we investigated the effects of driving pressure, pulse duration, and bulk boiling point of perfluorocarbon droplets on ADV dynamics, payload release, and acoustic emissions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, China.
Pterygium is a common ocular surface lesion, and postoperative recurrence remains a major challenge due to insufficient therapeutic strategies targeting fibroblast proliferation and inflammation. Fibrinogen hydrogel (Fibrin glue, FG), a bioadhesive hydrogel, is widely used in pterygium surgery to secure conjunctival autografts. However, its low adhesion often leads to graft detachment, hindering effective repair.
View Article and Find Full Text PDFTransl Vis Sci Technol
September 2025
Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
Purpose: To develop an in vitro model that mimics aspects of corneal healing in humans for uncovering key mechanisms involved in the mechanisms involved in the healing and scarring processes.
Methods: As part of the healing matrix, TGF-β1-induced and corneal-derived myofibroblasts were cultured in fibrin hydrogels with configurations that recapitulate the healthy (aligned) and wounded (random) microenvironment of the cornea.
Results: Evaluation of cellular alpha smooth muscle actin (α-SMA) and collagen hybridizing peptide (CHP) showed cell and matrix alignment, respectively.
Adv Mater
September 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Replicating the highly-organized extracellular matrix microfibrillar networks and directional cellular organization of native skeletal muscles is essential for engineering functional muscle constructs. Here, we propose a consecutive hybrid bioprinting (CHB) strategy to fabricate living composite constructs with polymeric microfibers, sacrificial gelatin and cell-laden fibrin hydrogels by combining electrohydrodynamic (EHD) printing and extrusion-based bioprinting, which enables the engineering of mechanically-matched and highly-aligned porous muscle constructs. The bioprinted hydrogel components provide a smooth and dynamically-rising conductive surface for stable EHD printing of well-organized microfibers with centimeter height, which conversely provides mechanical support to ensure the structural integrity of the resultant composite constructs.
View Article and Find Full Text PDF