A Comparison of Hydroxyl Radical and Hydrogen Peroxide Generation in Ambient Particle Extracts and Laboratory Metal Solutions.

Atmos Environ (1994)

Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.

Published: January 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Generation of reactive oxygen species (ROS) - including superoxide ((•)O(2) (-)), hydrogen peroxide (HOOH), and hydroxyl radical ((•)OH) - has been suggested as one mechanism underlying the adverse health effects caused by ambient particulate matter (PM). In this study we compare HOOH and (•)OH production from fine and coarse PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California, as well as from laboratory solutions containing dissolved copper or iron. Samples were extracted in a cell-free, phosphate-buffered saline (PBS) solution containing 50 μM ascorbate (Asc). In our laboratory solutions we find that Cu is a potent source of both HOOH and (•)OH, with approximately 90% of the electrons that can be donated from Asc ending up in HOOH and (•)OH after 4 h. In contrast, in Fe solutions there is no measurable HOOH and only a modest production of (•)OH. Soluble Cu in the SJV PM samples is also a dominant source of HOOH and (•)OH. In both laboratory copper solutions and extracts of ambient particles we find much more production of HOOH compared to (•)OH: e.g., HOOH generation is approximately 30 - 60 times faster than (•)OH generation. The formation of HOOH and (•)OH are positively correlated, with roughly 3 % and 8 % of HOOH converted to (•)OH after 4 and 24 hr of extraction, respectively. Although the SJV PM produce much more HOOH than (•)OH, since (•)OH is a much stronger oxidant it is unclear which species might be more important for oxidant-mediated toxicity from PM inhalation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259706PMC
http://dx.doi.org/10.1016/j.atmosenv.2011.10.006DOI Listing

Publication Analysis

Top Keywords

hooh •oh
24
•oh
12
hooh
11
hydroxyl radical
8
hydrogen peroxide
8
laboratory solutions
8
source hooh
8
solutions
5
comparison hydroxyl
4
radical hydrogen
4

Similar Publications

Biochemical Ferrous Ions (Fe2+) Mediated Fenton Reaction: A Biological Prodigy for Curing and Developing Autoimmune Rheumatoid Arthritis and Cancer.

J Environ Pathol Toxicol Oncol

January 2025

Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute under - Department of Science & Technology (Govt. of India).

Iron is an essential trace element for the human body, but having too much or too little of it can cause various biological issues. When ferrous ions react with hydrogen peroxide, they create highly reactive and soluble hydroxyl radicals that can damage cells through oxidation. This reaction, known as the Fenton reaction, can cause lipid peroxidation and ferroptosis.

View Article and Find Full Text PDF

Computational modeling for PPE filtration: Informed by material characterization, microbial penetration, and particle mechanics.

J Occup Environ Hyg

September 2025

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.

This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.

View Article and Find Full Text PDF

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.

View Article and Find Full Text PDF

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF