98%
921
2 minutes
20
Expression of CD1a proteins in human monocyte-derived dendritic cells (DCs) specifies functionally distinct subsets with different inflammatory properties. Histamine is recognized as an inflammatory mediator released by various cell types including DCs. The diverse biological effects of histamine are mediated by G-protein-coupled histamine receptors (HRs), which are able to modulate the functional activities of DC subsets. The goal of the present study was to compare the expression and activity of HRs in the CD1a(-) and CD1a(+) monocyte-derived DC subsets and to test the effects of histamine on the differentiation, activation and functional activities of these subsets. We show that H2R is present at high levels in both DC subsets, whereas H1R and H4R are expressed in a subset-specific manner. Histamine shifts DC differentiation to the development of CD1a(-) DCs and modulates DC activation through its inhibitory effect on CD1a(+) DC differentiation. Histamine-induced reduction of CD1a(+) DCs is associated with increased secretion of IL-6 and IL-10, up-regulation of a typical combination of chemokines, expression C5aR1 by the CD1a(-) DC subset and enhanced migration of both activated DC subsets supported by the production of MMP-9 and MMP-12 enzymes. All these effects were shown to be mediated in a H2R-specific manner as revealed by the specific antagonist of the receptor. As H2R is expressed at high levels in both DC subsets, we propose that it may dominate the regulation of multiple DC functions. In contrast, H1R and H4R with opposing subset-related expression may have a regulatory or fine-tuning role in histamine-induced functional activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxr107 | DOI Listing |
Mutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFJ Trace Elem Med Biol
September 2025
Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland. Electronic address:
Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.
View Article and Find Full Text PDFChannels (Austin)
December 2025
Biorheology Research Laboratory, Faculty of Health, Griffith University, Gold Coast, Australia.
The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.
The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104, United States.
A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.
View Article and Find Full Text PDF