Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Forward genetic screens provide a powerful approach for inferring gene function on the basis of the phenotypes associated with mutated genes. However, determining the causal mutation by traditional mapping and candidate gene sequencing is often the rate-limiting step, especially when analyzing many mutants. We report two genomic approaches for more rapidly determining the identity of the affected genes in Caenorhabditis elegans mutants. First, we report our use of restriction site-associated DNA (RAD) polymorphism markers for rapidly mapping mutations after chemical mutagenesis and mutant isolation. Second, we describe our use of genomic interval pull-down sequencing (GIPS) to selectively capture and sequence megabase-sized portions of a mutant genome. Together, these two methods provide a rapid and cost-effective approach for positional cloning of C. elegans mutant loci, and are also applicable to other genetic model systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213368PMC
http://dx.doi.org/10.1534/genetics.111.134031DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
restriction site-associated
8
site-associated dna
8
genomic interval
8
interval pull-down
8
pull-down sequencing
8
mutants report
8
rapid mapping
4
mapping identification
4
identification mutations
4

Similar Publications

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.

View Article and Find Full Text PDF

Decision-making is a ubiquitous component of animal behavior that is often studied in the context of foraging. Foragers make a series of decisions while locating food (food search), choosing between food types (diet or patch choice), and allocating time spent within patches of food (patch-leaving). Here, we introduce a framework for investigating foraging decisions using detailed analysis of individual behavior and quantitative modeling in the nematode .

View Article and Find Full Text PDF

Orsay virus variants isolated from wild nematodes, France.

Microbiol Resour Announc

September 2025

Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.

Four new variants of Orsay virus were identified from wild isolates of nematodes collected from decaying plant matter in France. Near-complete genomes of the viruses were determined by metagenomic sequencing. The four genomes share 96.

View Article and Find Full Text PDF

The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.

View Article and Find Full Text PDF