[Association of human microRNA related genetic variations with cancer].

Yi Chuan

Department of Genomics & Proteomics, State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing 100850, China.

Published: August 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

microRNAs (miRNAs) are a highly conserved class of small noncoding RNAs that regulate gene expression by post-transcriptional degradation or translational repression. miRNAs are involved in the regulation of cell apoptosis, proliferation, differentiation and other physiological processes, and are closely related with the development of cancer. More recently, it has been proposed that the presence of genetic variations (e.g., single nucleotide polymorphism and copy number variation) in microRNA genes, their biogenesis pathway and target binding sites affect the miRNA processing machinery and targeting, and have a significant genetic effect. In this review, we focus on the miRNA-related genetic variations and cancer susceptibility and progression.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2011.00870DOI Listing

Publication Analysis

Top Keywords

genetic variations
12
[association human
4
human microrna
4
genetic
4
microrna genetic
4
variations cancer]
4
cancer] micrornas
4
micrornas mirnas
4
mirnas highly
4
highly conserved
4

Similar Publications

Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.

View Article and Find Full Text PDF

Germline Findings From Tumor-Only Comprehensive Genomic Profiling in the RATIONAL Study: A Missed Opportunity?

JCO Precis Oncol

September 2025

Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.

Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.

Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.

View Article and Find Full Text PDF

Objective: Aim: To provide a comprehensive understanding of the profound developmental and medical challenges associated with this condition..

Patients And Methods: Materials and Methods: Τhis study employed a narrative review methodology, drawing upon a wide range of peer-reviewed scientific literature, clinical guidelines, and case studies.

View Article and Find Full Text PDF

Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).

View Article and Find Full Text PDF

Somatic mitochondrial DNA (mtDNA) mutations are frequently observed in tumors, yet their role in pediatric cancers remains poorly understood. The heteroplasmic nature of mtDNA-where mutant and wild-type mtDNA coexist-complicates efforts to define its contribution to disease progression. In this study, bulk whole-genome sequencing of 637 matched tumor-normal samples from the Pediatric Cancer Genome Project revealed an enrichment of functionally impactful mtDNA variants in specific pediatric leukemia subtypes.

View Article and Find Full Text PDF