Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the mechanical properties of human liver is one of the most critical aspects of its numerical modeling for medical applications or impact biomechanics. Generally, model constitutive laws come from in vitro data. However, the elastic properties of liver may change significantly after death and with time. Furthermore, in vitro liver elastic properties reported in the literature have often not been compared quantitatively with in vivo liver mechanical properties on the same organ. In this study, both steps are investigated on porcine liver. The elastic property of the porcine liver, given by the shear modulus G, was measured by both Transient Elastography (TE) and Dynamic Mechanical Analysis (DMA). Shear modulus measurements were realized on in vivo and in vitro liver to compare the TE and DMA methods and to study the influence of testing conditions on the liver viscoelastic properties. In vitro results show that elastic properties obtained by TE and DMA are in agreement. Liver tissue in the frequency range from 0.1 to 4 Hz can be modeled by a two-mode relaxation model. Furthermore, results show that the liver is homogeneous, isotropic and more elastic than viscous. Finally, it is shown in this study that viscoelastic properties obtained by TE and DMA change significantly with post mortem time and with the boundary conditions.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BIR-2011-0584DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
elastic properties
12
liver
10
vivo liver
8
liver tissue
8
properties
8
transient elastography
8
dynamic mechanical
8
mechanical analysis
8
vitro liver
8

Similar Publications

With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF