98%
921
2 minutes
20
Contamination by microscopic fungi and mycotoxins in different bee pollen samples, which were stored under three different ways of storing as freezing, drying and UV radiation, was investigated. During spring 2009, 45 samples of bee-collected pollen were gathered from beekeepers who placed their bee colonies on monocultures of sunflower, rape and poppy fields within their flying distance. Bee pollen was collected from bees' legs by special devices placed at the entrance to hives. Samples were examined for the concentration and identification of microscopic fungi able to grow on Malt and Czapek-Dox agar and mycotoxins content [deoxynivalenol (DON), T-2 toxin (T-2), zearalenone (ZON) and total aflatoxins (AFL), fumonisins (FUM), ochratoxins (OTA)] by direct competitive enzyme-linked immunosorbent assays (ELISA). The total number of microscopic fungi in this study ranged from 2.98 ± 0.02 in frozen sunflower bee pollen to 4.06 ± 0.10 log cfu.g(-1) in sunflower bee pollen after UV radiation. In this study, 449 isolates belonging to 21 fungal species representing 9 genera were found in 45 samples of bee pollen. The total isolates were detected in frozen poppy pollen 29, rape pollen 40, sunflower pollen 80, in dried poppy pollen 12, rape pollen 36, sunflower 78, in poppy pollen after UV radiation treatment 54, rape 59 and sunflower 58. The most frequent isolates of microscopic fungi found in bee pollen samples of all prevalent species were Mucor mucedo (49 isolates), Alternaria alternata (40 isolates), Mucor hiemalis (40 isolates), Aspergillus fumigatus (33 isolates) and Cladosporium cladosporioides (31 isolates). The most frequently found isolates were detected in sunflower bee pollen frozen (80 isolates) and the lowest number of isolates was observed in poppy bee pollen dried (12 isolates). The most prevalent mycotoxin of poppy bee pollen was ZON (361.55 ± 0.26 μg.kg(-1)), in rape bee pollen T-2 toxin (265.40 ± 0.18 μg.kg(-1)) and in sunflower bee pollen T-2 toxin (364.72 ± 0.13 μg.kg(-1)) in all cases in frozen samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601234.2011.589322 | DOI Listing |
J Food Sci Technol
October 2025
Department of Nutrition and Food Hygiene, School of Medicine, Hamadan University of Medical Sciences, P.O.Box 6517838736, Hamadan, Iran.
Dairy products such as yogurt are nutritious food sources. Propolis is formed by mixing tree secretions with pollen and bee enzymes and has some functional properties. Basil seed is a rich source of hydrocolloids with outstanding functional properties.
View Article and Find Full Text PDFEnviron Int
August 2025
Department of Molecular Toxicology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany. Electr
Single and mixture exposure to plant protection products (PPPs) can affect non-target organisms at sublethal concentrations, yet the ecological relevance of behavioural effects remains underexplored. Behavioural disruptions can compromise survival and fitness, with exposure occurring across terrestrial and aquatic ecosystems. Here, we assess the behavioural impact of environmentally relevant PPP concentrations on two ecologically and toxicologically important model species: honeybees (Apis mellifera) and zebrafish (Danio rerio).
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry "G. Ciamician", University of Bologna Via Piero Gobetti 83 40129 Bologna Italy
The increasing presence of micro- and nanoplastics in natural environments raises concerns about their interactions with biological particles such as pollen, that may act as carriers but could also undergo subtle chemical or structural changes, potentially influencing their ecological role. At the same time, the analytical and technological approaches used to investigate nanoplastic pollution mechanism can themselves raise concerns regarding their greenness. In this interdisciplinary study, we explored the interactions between multifloral bee pollen and polyethylene terephthalate nanoparticles (NanoPET) under environmentally relevant conditions using a multimodal analytical strategy combining AF4 (Asymmetrical Flow Field-Flow Fractionation) multidetection, Pyrolysis-GC-MS (py-GC-MS), Field Emission Scanning Electron Microscopy (FESEM), and dielectrophoresis-Raman spectroscopy (DEP-Raman).
View Article and Find Full Text PDFPlant Biol (Stuttg)
September 2025
Department of Botany, Postgraduate Program in Plant Biology, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
The high costs of floral maintenance modulate floral longevity. In some species with massive flowering and long floral lifespan, floral longevity increases overall display by changing petal colour, which ultimately counterbalances costs of floral maintenance. However, the colour of petals remains unchanged throughout the floral lifespan in some species with long floral longevity, and the reproductive consequences of such combined traits remain elusive.
View Article and Find Full Text PDFPoult Sci
August 2025
Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China; Local Goose Gene Bank in Anhui Province, Anhui Science and Technology University, Chuzhou 233100, China; Anhui Engineering Technolo
Bee pollen is rich in nutrients and bioactive compounds, exhibiting properties such as antioxidant effects, immune enhancement, and promotion of growth and development. However, there are limited studies on the use of bee pollen in goose breeding. This study aimed to investigate the effects of rape bee pollen (RBP) and camellia bee pollen (CBP) on production performance, intestinal morphology, digestive enzyme activity, antioxidant and immune indices, and gut microbiota in Wanxi white goose.
View Article and Find Full Text PDF