Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Traumatic brain injury causes deleterious brain edema, leading to high mortality and morbidity. Brain edema exacerbates neurologic deficits and may be attributable to the breakdown of endothelial cell junction protein, leukocyte infiltration, and matrix metalloproteinase activation. These all contribute to loss of blood-brain barrier integrity. The pleiotropic effects of statins, hydroxymethylglutaryl-coenzyme A reductase inhibitors, may inhibit posttraumatic brain edema. We therefore investigated the effect of acute simvastatin on neurologic deficits, cerebral edema, and its origins.

Design: Randomized laboratory animal study.

Settings: University-affiliated research laboratory.

Subjects: Male Sprague-Dawley rats.

Interventions: Rats were subjected to lateral fluid percussion traumatic brain injury. Our preliminary dose-effect study indicated that 37.5 mg/kg simvastatin, administered orally 1 hr and 6 hrs after traumatic brain injury, has the greatest anti-edematous effect. This dose was used to study its effects on brain edema and on its mechanisms.

Measurements And Main Results: We first assessed the effects of simvastatin 24 hrs after traumatic brain injury on brain edema, brain claudin-5 expression, and the vascular endothelial-cadherin (pTyr731)/total vascular endothelial-cadherin ratio, matrix metalloproteinase-9 activity, intercellular adhesion molecule-1 expression, and polymorphonuclear neutrophil infiltration. We also evaluated blood-brain barrier permeability by measuring Evans blue and fluorescein sodium salt extravasation into the cerebral parenchyma. We then investigated whether simvastatin reduces neurologic deficits, edema, and blood-brain barrier permeability earlier than 24 hrs; these effects were evaluated 6 hrs after traumatic brain injury. The anti-edematous effect of simvastatin 24 hrs after traumatic brain injury was associated with increased claudin-5 and decreased intercellular adhesion molecule-1, polymorphonuclear neutrophil infiltration, and blood-brain barrier permeability, with no effect on matrix metalloproteinase-9 activity or vascular endothelial-cadherin phosphorylation. Earlier, 6-hrs after traumatic brain injury, simvastatin reduced neurologic deficits, cerebral edema, and blood-brain barrier permeability.

Conclusions: Simvastatin could be a new therapy for reducing posttraumatic edema by preventing damage to tight junctions and neutrophil infiltration into the parenchyma, thus preserving blood-brain barrier integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0b013e3182227e4aDOI Listing

Publication Analysis

Top Keywords

traumatic brain
32
brain injury
32
brain edema
24
blood-brain barrier
24
neurologic deficits
16
hrs traumatic
16
brain
15
vascular endothelial-cadherin
12
neutrophil infiltration
12
barrier permeability
12

Similar Publications

Authors reply: "Risk factors associated with acute kidney injury in patients with traumatic brain injury: A systematic review and meta-analysis".

J Crit Care

September 2025

Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China. Electronic address:

View Article and Find Full Text PDF

Authors reply: "Risk factors associated with acute kidney injury in patients with traumatic brain injury: A systematic review and meta-analysis".

J Crit Care

September 2025

Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China. Electronic address:

View Article and Find Full Text PDF

Choral harmony: the role of collective singing in ritual, cultural identity and cognitive-affective synchronisation in the age of AI.

Disabil Rehabil Assist Technol

September 2025

School of Drama, Film and Television, Shenyang Conservatory of Music, Shenyang, China.

This study examines how choral singing functions as a mechanism for sustaining ritual practice and reinforcing cultural identity. By integrating perspectives from musicology, social psychology, and cognitive science, it explores how collective vocal performance supports emotional attunement, group cohesion, and symbolic memory in culturally diverse contexts. A mixed-methods approach was applied, combining ethnographic observation, survey-based data, and cognitive measures with AI-informed frameworks such as voice emotion recognition and neural synchrony modeling.

View Article and Find Full Text PDF