98%
921
2 minutes
20
In the present study, the multipotent potential of two differential isolated human adipose-derived stem cell (hADSC) populations was evaluated. More specifically, hADSC isolated by means of classical Ficoll (F) gradient centrifugation were compared to hADSC isolated by means of red blood cell (RBC) lysis treatment and subsequent cultivation as 3D spheres. No significant difference in the genotypic expression of the multipotent markers Oct-4, Sox-2, Nanog, Klf-4 and cMyc could be observed between both isolation methods. Upon adipogenic and osteogenic differentiation, both hADSC populations showed lipid droplet accumulation and mineral deposition, respectively. Although, a more pronounced mineral deposition was observed in hADSC-RBC, suggesting a higher osteogenic potential. Upon exposure to keratinogenic media, both hADSC populations expressed the keratinocyte markers filaggrin and involucrin, evidencing a successful keratinogenic differentiation. Yet, no differences in expression were observed between the distinctive isolation procedures. Finally, upon exposure to neurogenic differentiation media, a significant difference in marker expression was observed. Indeed, hADSC-RBC only expressed vimentin and nestin, whereas hADSC-F expressed vimentin, nestin, NF-200, MBP and TH, suggesting a higher neurogenic potential. In summary, our data suggest that the choice of the most efficient isolation procedure of hADSC depends on the differentiated cell type ultimately required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2011.05.024 | DOI Listing |
Int J Mol Sci
June 2025
Department of Biology, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
The global obese population accounts for approximately 30% of the total population and continues to increase. White adipocytes, which accumulate in the body for energy storage, are associated with obesity. Mechanisms that activate browning of white adipocytes are an attractive therapeutic target for obesity and metabolic disorders.
View Article and Find Full Text PDFJ Orthop Surg Res
November 2024
Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606- 8507, Japan.
Bioeng Transl Med
March 2024
Department of Plastic and Aesthetic Surgery Huadong Hospital, Shanghai Medical College, Fudan University Shanghai China.
Skin wound healing often leads to scar formation, presenting physical and psychological challenges for patients. Advancements in messenger RNA (mRNA) modifications offer a potential solution for pulsatile cytokine delivery to create a favorable wound-healing microenvironment, thereby preventing cutaneous fibrosis. This study aimed to investigate the effectiveness of human adipose-derived stem cells (hADSCs) enriched with -methylpseudouridine (m1ψ) modified transforming growth factor-β3 (TGF-β3) and interleukin-10 (IL-10) mRNA in promoting scar-free healing in preclinical models.
View Article and Find Full Text PDFMater Horiz
August 2023
Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
Three-dimensional stem cell models have enabled a fundamental understanding of cues that direct stem cell fate. While sophisticated 3D tissues can be generated, technology that can accurately monitor these complex models in a high-throughput and non-invasive manner is not well adapted. Here we show the development of 3D bioelectronic devices based on the electroactive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-(PEDOT:PSS) and their use for non-invasive, electrical monitoring of stem cell growth.
View Article and Find Full Text PDFCell Transplant
August 2022
Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan.
The global population of individuals afflicted with diabetes mellitus has been increasing year by year, and this disease poses a serious threat to human health as well as the economies worldwide. Pancreatic or islet transplantations provide one of the most effective and long-term therapies available to treat diabetes, but the scarcity and quality of pancreatic islets limit their use in treatments. Here, we report the development of a one-step, monolayer culture, and chemical-based protocol that efficiently mediates the differentiation of human adipose-derived stem cells (hADSCs) into insulin-producing cells (IPCs).
View Article and Find Full Text PDF