Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transmittance of one-dimensional photonic crystals consisting of superconductor and lossless dielectric has been systematically studied through the transfer-matrix method. Obviously, the shift of the photonic bandgap (PBG) becomes more noticeable by adjusting the thicknesses of the dielectric layers than that of superconductor layers. Furthermore, the number of PBGs can be controlled by varying the thicknesses of dielectric layers. Compared to the thicknesses of the dielectric layers, the width of the PBGs is more sensitive to the thicknesses of the superconductor layers. However, the width of the first PBG promptly varies when the thicknesses of the dielectric layers increase from 0 to 40 nm. If the contribution of the normal conducting electrons of the superconductor is nonnegligible, the temperature of the superconductor has no influence on the width of the PBGs. Moreover, the damp coefficient does not affect the PBGs under low-temperature conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.50.002370DOI Listing

Publication Analysis

Top Keywords

thicknesses dielectric
16
dielectric layers
16
photonic bandgap
8
superconductor layers
8
layers width
8
width pbgs
8
layers
6
superconductor
5
dielectric
5
thicknesses
5

Similar Publications

Treatment of seeds with cold atmospheric pressure plasma (CAPP) is in its proof-of-concept phase with regard to its effect on germination and plant growth. To increase the germination of hardseeded red clover (Trifolium pratense L.), seeds are usually scarified, which is time-consuming and labour-intensive.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

The functionalization of thin, flexible glass with piezoelectric oxides is a pathway toward transparent electromechanical devices. The crystallization of lead zirconate titanate thin films on thick, rigid glass is previously demonstrated using flash lamp annealing to selectively anneal the films, without damaging the substrates. In this work, a 2-step process suitable for Schott AF 32 eco glass and Corning Willow glass is developed, both 100 μm thick, the latter of which is compatible with roll-to-roll processes.

View Article and Find Full Text PDF

Droplet electricity generators (DEGs) that generate electricity through the interplay between water and the dielectric materials have attracted growing research interest due to their remarkable output voltage. However, conventional DEG design faces a critical trade-off: regulating the properties of dielectric materials, such as thickness or permittivity, can enhance output voltage yet weaken transferred charge. Here, a fluorinated ethylene propylene (FEP)/multi-walled carbon nanotubes (MWCNTs)/polydimethylsiloxane (PDMS) composite-based droplet electricity generator (FMP-DEG) is presented to overcome the voltage-charge trade-off and thus achieve an enhanced energy conversion efficiency of 4.

View Article and Find Full Text PDF

Wafer-Scale Demonstration of BEOL-Compatible Ambipolar MoS Devices Enabled by Plasma-Enhanced Atomic Layer Deposition.

ACS Appl Mater Interfaces

September 2025

Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.

The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.

View Article and Find Full Text PDF