98%
921
2 minutes
20
Morphology of foliar trichomes was analyzed in Quercus variabilis by electron microscopy and three-dimensional surface profiling. Leaves from suppressed or dominant sprouts of the oak species were collected after a forest fire to unravel the effects of the disturbance factor on sprouting of the oak species. Scanning electron microscopy revealed two types of trichomes depending on the leaf surface. The trichomes on the adaxial surface were branched and constricted, and possessed a single row of thin-walled cells with a collapsed morphology (glandular branched uniseriate trichomes). Meanwhile, the trichomes on the abaxial surface were star-shaped, unfused with each other, and had 6 to 10 rays (nonglandular simple stellate trichomes). An apparent proliferation of trichomes was evident on the adaxial surface of the dominant sprouts. Uniseriate trichomes could be discernable as an elevation from the surface by white light scanning interferometry. By transmission electron microscopy, thin and convoluted cell wall, degenerated cytoplasm, and a single row of cells were characteristic of the trichomes on the adaxial surface. The thick cell walls of the mature trichomes on the abaxial surface represented the nonglandular nature. This is the first report on the morphological and ultrastructural characterization of foliar trichomes of the oak species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927611000407 | DOI Listing |
Nano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFAnal Methods
September 2025
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Universitätsstr. 150, Building MA 5/52, Bochum, 44801, Germany.
Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.
Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.
Neotrop Entomol
September 2025
Grupo de Ecología Química, Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de La Frontera Sur, Tapachula, , Chiapas, Mexico.
Insect chemoreception is essential for locating food, selecting oviposition sites, and detecting infochemicals. In tephritid fruit flies, chemosensory perception occurs primarily through sensilla on the antennal flagella, maxillary palps, and ovipositor. Identifying these sensilla provides insights into olfaction, which may lead to improvements in insect control measures.
View Article and Find Full Text PDF